Information and Computation 209 (2011) 951-965

]

Contents lists available at ScienceDirect

Information

and
Computation

Information and Computation

EI.SEVIER journal homepage:www.elsevier.com/locate/ic

Leaf languages and string compression™
Markus Lohrey

Universitdt Leipzig, Institut fiir Informatik, Germany

ARTICLEINFO ABSTRACT

Article history: Tight connections between leaf languages and strings compressed by straight-line programs
Received 24 November 2009 (SLPs) are established. It is shown that the compressed membership problem for a language
Available online 15 February 2011 L is complete for the leaf language class defined by L via logspace machines. A more difficult

variant of the compressed membership problem for L is shown to be complete for the leaf

K ds: . C 1 . .

eyworas language class defined by L via polynomial time machines. As a corollary, it is shown that
Leaf languages N N . : ¢
Straight-line programs there existsa fixed linear visibly pushdown language _f0.r which the compressed membership
Compressed string problem is PSPACE-complete. For XML languages, it is shown that the compressed mem-
Complexity theory bership problem is coNP-complete. Furthermore it is shown that the embedding problem

for SLP-compressed strings is hard for PP (probabilistic polynomial time).
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Leaf languages were introduced in [9,37] and have become an important concept in complexity theory. Let us consider
a nondeterministic Turing machine M. For a given input x, one considers the yield string of the ordered computation tree
(i.e., the string obtained by listing all leaves from left to right), where accepting (resp. rejecting) leaf configurations yield
the letter 1 (resp. 0). This string is called the leaf string corresponding to the input x. For a given language K C {0, 1}* let
LEAF (M, K) denote the set of all inputs for M such that the corresponding leaf string belongs to K. By fixing K and taking
for M all nondeterministic polynomial time machines, one obtains the polynomial time leaf language class LEAFL3 (K). The
index a indicates that we allow Turing machines with arbitrary (non-balanced) computation trees. If we restrict to machines
with balanced computation trees, we obtain the class LEAFII,D (K). See [17,19,21] for a discussion of the different shapes for
computation trees.

Many complexity classes can be defined in a uniform way with this construction. For instance, NP = LEAFf (0*1{0, 1}**)

and coNP = LEAFE(]*) for both x = a and x = b. In [18], it was shown that PSPACE = LEAFbP (K) for a fixed regular

language K. In [21], logspace leaf language classes LEAFI‘; (K) and LEAFIL) (K), where M varies over all (resp. all balanced)
nondeterministic logspace machines, were investigated. Among other results, a fixed deterministic context-free language K
with PSPACE = LEAF!; (K) was presented. In [10], it was shown that in fact a fixed deterministic one-counter language K
as well as a fixed linear deterministic context-free language [20] suffices in order to obtain PSPACE. Here “linear” means
that the pushdown automaton makes only one turn.

In [8,36], a tight connection between leaf languages and computational problems for succinct input representations was
established. More precisely, it was shown that the membership problem for a language K < {0, 1}* is complete (w.r.t.
polynomial time reductions in [8] and projection reductions in [36]) for the leaf language class LEAF,IJD (K), if the input string
x is represented by a Boolean circuit. A Boolean circuit C(xq, ..., X,) with n inputs represents a string x of length 2" in the
natural way: the ith positionin x carriesa 1 ifand only if C(ay, ..., a,) = 1,wherea - - - a, is the n-bit binary representation
of i. In this paper we consider another compressed representation for strings, namely straight-line programs (SLPs) [33], which

* This work is supported by the German Research Foundation (DFG) via the research project ALKODA.
E-mail address: lohrey@informatik.uni-leipzig.de

0890-5401/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2011.01.009

http://dx.doi.org/10.1016/j.ic.2011.01.009
http://www.sciencedirect.com/science/journal/08905401
www.elsevier.com/locate/ic
http://dx.doi.org/10.1016/j.ic.2011.01.009

952 M. Lohrey / Information and Computation 209 (2011) 951-965

is compared to Boolean circuits more amenable to efficient algorithms. A straight-line program is a context-free grammar
A that generates exactly one string val(A). In an SLP, repeated subpatterns in a string have to be represented only once by
introducing a nonterminal for the pattern. An SLP with n productions can generate a string of length 2" by repeated doubling.
Hence, an SLP can be seen indeed as a compressed representation of the string it generates. Several other dictionary-based
compressed representations, like for instance Lempel-Ziv (LZ) factorizations [40], can be converted in polynomial time into
SLPs and vice versa [33]. This implies that complexity results can be transferee from SLP-encoded input strings to LZ-encoded
input strings.

Algorithmic problems for SLP-compressed strings were studied e.g. in [6,25,26,28,29,32,33]. A central problem in this
context is the compressed membership problem for a language K: it is asked whether val(A) € K for a given SLP A. In [26]
it was shown that there exists a fixed linear deterministic context-free language with a PSPACE-complete compressed
membership problem. A straightforward argument shows that for every language K, the compressed membership problem
for K is complete for the logspace leaf language class LEA F',; (K) (Proposition 4). As a consequence, the existence of a linear
deterministic context-free language with a PSPACE-complete compressed membership problem [26] can be deduced from
the above mentioned LEAF'L;—characterization of PSPACE from [10], and vice versa. For polynomial time leaf languages,
we reveal a more subtle relationship to SLPs. Recall that the convolution u ® v of two strings u, v € X* is the string over the
paired alphabet X x X that is obtained from gluing u and v in the natural way (we cut off the longer string to the length of
the shorter one). We define a fixed projection homomorphism p : {0, 1} x {0, 1} — {0, 1} such that for every language K,
the problem of checking p (val(A) ® val(B)) € K for two given SLPs A, B is complete for the class LEAFE (K) (Corollary 6).

By combining Corollary 6 with the main result from [18] (PSPACE = LEAFE (K) for a certain regular language K), we
obtain a regular language L for which it is PSPACE-complete to check whether the convolution of two SLP-compressed
strings belongs to L (Corollary 8). Recently, the convolution of SLP-compressed strings was also studied in [6], where for
every/121 > 0, SLPs A, By, of size n°) were constructed such that every SLP for the convolution val(A,) ® val(B,) has size
Q2.

From Corollary 8 we obtain a strengthening of one of the above mentioned results from [10] (PSPACE = LEAF'a‘ (K) fora
linear deterministic context-free language K as well as a deterministic one-counter language K) to visibly pushdown languages
[1]. The latter constitute a subclass of the deterministic context-free languages which received a lot of attention in recent
years due to its nice closure and decidability properties. Visibly pushdown languages can be recognized by deterministic
pushdown automata, where it depends only on the input symbol whether the automaton pushes or pops. Visibly pushdown
languages were already introduced in [39] as input-driven languages. In [12] it was shown that every visibly pushdown
language can be recognized in NC!; thus the complexity is the same as for regular languages [2]. In contrast to this, there
exist linear deterministic context-free languages as well as deterministic one-counter languages with an L-complete mem-
bership problem [20]. We show that there exists a linear visibly pushdown language with a PSPACE-complete compressed
membership problem (Theorem 9). Together with Proposition 4, it follows that PSPACE = LE/—\F!; (K) for a linear visibly
pushdown language K (Corollary 10).

In [31], nondeterministic finite automata (instead of polynomial time (resp. logspace) Turing-machines) were used as
a device for generating leaf strings. This leads to the definition of the leaf language class LE/—\FFA(K). It was shown that
CFL C LEAFPA(CFL) < DSPACE(n?) N DTIME(2°™), and the question for sharper upper and lower bounds was
posed. Here we give a partial answer to this question. For the linear visibly pushdown language mentioned in the previous
paragraph, the class LEAF™(K) contains a PSPACE-complete language (Theorem 11).

Another application of the connection between SLP-compression and leaf languages is presented in Section 4.2. The
compressed embedding problem (briefly COMPRESSED-EMBEDDING) asks for two given SLPs A and B whether val(A) is
a subsequence of val(B), i.e., whether val(A) can be embedded into val(IB) where consecutive positions in val(A) can be
mapped to non-consecutive positions in val(BB). In [25], it was shown that COMPRESSED-EMBEDDING is hard for Ph\'P, which
is the class of all problems that can be solved on a deterministic Turing-machine with access to an NP-oracle, where all
queries are sent in parallel to the oracle (non-adaptive oracle access). A simplified proof can be found in [28]. Here we will
strengthen the lower bound of Ph\‘P to PP (Theorem 13). Alanguage L belongs to the class PP (probabilistic polynomial time)
if there exists a polynomial time NTM M such that w € L if and only if on input w the number of accepting computations
is larger than the number of rejecting computations. In other words, the acceptance probability has to be larger than 1/2.
It is known that Ph\'P C PP [4]. Moreover, Toda’s famous theorem [35] states that PPP contains the polynomial time
hierarchy. Hence, PP-hardness of COMPRESSED-EMBEDDING implies that COMPRESSED-EMBEDDING is not contained in
the polynomial time hierarchy unless the latter collapses. The best known upper bound for COMPRESSED-EMBEDDING is
still PSPACE.

Finally, in Section 5 we consider XML-languages [5], which constitute a subclass of the visibly pushdown languages. XML-
languages are generated by a special kind of context-free grammars (XML-grammars), where every right-hand side of a
production is enclosed by a matching pair of brackets. XML-grammars capture the syntactic features of XML document type
definitions (DTDs), see [5]. We prove that, unlike for visibly pushdown languages, for every XML-language the compressed
membership problem is in coNP and that there are coNP-complete instances.

A short version of this paper appeared in [27].

Download English Version:

https://daneshyari.com/en/article/426828

Download Persian Version:

https://daneshyari.com/article/426828

Daneshyari.com

https://daneshyari.com/en/article/426828
https://daneshyari.com/article/426828
https://daneshyari.com

