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We exhibit a polynomial time computable plane curve � that has finite length, does not

intersect itself, and is smooth except at one endpoint, but has the following property. For

every computableparametrization f of� andeverypositive integerm, there is somepositive-

length subcurve of � that f retraces at least m times. In contrast, every computable curve

of finite length that does not intersect itself has a constant-speed (hence non-retracing)

parametrization that is computable relative to the halting problem.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

A curve is amathematicalmodel of the path of a particle undergoing continuousmotion. Specifically, in a Euclidean space

Rn, a curve is the range � of a continuous function f : [a, b] → Rn for some a < b. The function f , called a parametrization

of �, clearly contains more information than the pointset �, namely, the precise manner in which the particle “traces”

the points f (t) ∈ � as t, which is often considered a time parameter, varies from a to b. When the particle’s motion is

algorithmically governed, the parametrization must be computable (as a function on the reals; see below).

This paper shows that the geometry of a curve � may force every computable parametrization f of � to retrace various

parts of its path (i.e., “go back and forth along �”) many times, even when � is an efficiently computable, smooth, finite-

length curve that does not intersect itself. In fact, our main theorem exhibits a plane curve � ⊆ R2 with the following

properties.

1. � is simple, i.e., it does not intersect itself.

2. � is rectifiable, i.e., it has finite length.

3. � is smooth except at one endpoint, i.e., � has a tangent at every interior point and a 1-sided tangent at one endpoint,

and these tangents vary continuously along �.

4. � is polynomial time computable in the strong sense that there is a polynomial time computable position function

�s : [0, 1] → R2 such that the velocity function �v = �s′ and the acceleration function �a = �v′ are polynomial time

computable; the total distance traversed by �s is finite; and �s parametrizes �, i.e., range(�s) = �.
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5. � must be retraced in the sense that every parametrization f : [a, b] → R2 of � that is computable in any amount

of time has the following property. For every positive integerm, there exist disjoint, closed subintervals I0, . . . , Im of

[a, b] such that the curve �0 = f (I0) has positive length and f (Ii) = �0 for all 1 ≤ i ≤ m. (Hence f retraces �0 at

least m times.)

The terms “computable” and “polynomial time computable” in properties 4 and 5 above refer to the “bit-computability”

model of computation on reals formulated in the 1950s by Grzegorczyk [9] and Lacombe [17], extended to feasible com-

putability in the 1980s by Ko and Friedman [13] and Kreitz and Weihrauch [16], and exposited in the recent paper by

Braverman and Cook [4] and the monographs [5,14,20,23]. As will be shown here, condition 4 also implies that the pointset

� is polynomial time computable in the sense of Brattka and Weihrauch [2]. (See also [3,4,23].)

A fundamental and useful theorem of classical analysis states that every simple, rectifiable curve � has a normalized

constant-speed parametrization, which is a one-to-one parametrization f : [0, 1] → Rn of � with the property that f ([0, t])
has arclength tL for all 0 ≤ t ≤ 1, where L is the length of�. (A simple, rectifiable curve� has exactly two such parametriza-

tions, one in each direction, and standard terminology calls either of these the normalized constant-speed parametrization

f : [0, 1] → Rn of�. The constant-speed parametrization is also called the parametrization by arclengthwhen it is reformu-

lated as a function f : [0, L] → Rn that moves with constant speed 1 along �.) Since the constant-speed parametrization

does not retrace any part of the curve, ourmain theorem implies that this classical theorem is not entirely constructive. Even

when a simple, rectifiable curve has an efficiently computable parametrization, the constant-speed parametrization need

not be computable.

In addition to ourmain theorem,we prove that every simple, rectifiable curve� inRn with a computable parametrization

has the following two properties:

I. The length of � is lower semicomputable.

II. The constant-speed parametrization of � is computable relative to the length of �.

These two things are not hard to prove if the computable parametrization is one-to-one, (in fact, they follow from results

of Müller and Zhao [19] in this case) but our results hold even when the computable parametrization retraces portions of

the curve many times.

Taken together, I and II have the following two consequences.

1. The curve� of ourmain theoremhas a finite length that is lower semi-computable but not computable. (The existence

of polynomial-time computable curves with this property was first proven by Ko [15].)

2. Every simple, rectifiable curve � in Rn with a computable parametrization has a constant-speed parametrization

that is �0
2-computable, i.e., computable relative to the halting problem. Hence, the existence of a constant-speed

parametrization, while not entirely constructive, is constructive relative to the halting problem.

2. Length, computability, and complexity of curves

In this section, we summarize basic terminology and facts about curves. As we use the terms here, a curve is the range �

of a continuous function f : [a, b] → Rn for some a < b. The function f is called a parametrization of �. Each curve clearly

has infinitely many parametrizations.

A curve is simple if it has a parametrization that is one-to-one, i.e., the curve “does not intersect itself”. The length of a

simple curve � is defined as follows. Let f : [a, b] 1−1→ Rn be a one-to-one parametrization of �. For each dissection �t of
[a, b], i.e., each tuple �t = (t0, . . . , tm)with a = t0 < t1 < · · · < tm = b, define the f -�t-approximate length of � to be

Lf

�t (�) =
m−1∑
i=0

|f (ti+1)− f (ti)|.

Then the length of � is

L(�) = sup
�t

Lf

�t (�),

where the supremum is taken over all dissections �t of [a, b]. It is easy to show that L(�) does not depend on the choice of

the one-to-one parametrization f , i.e., that the length is an intrinsic property of the pointset �.

In Sections 4 and 5 of this paper, we use amore general notion of length, namely, the one-dimensional Hausdorffmeasure

H1(�), which is defined for every set � ⊆ Rn. We refer the reader to [7] for the definition of H1(�). It is well known that

H1(�) = L(�) holds for every simple curve �.
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