Information and Computation 209 (2011) 992-1006

=

Contents lists available at ScienceDirect

Information

and
Computation

Information and Computation

" g N
EI.SEVIE

a5

R journal homepage:www.elsevier.com/locate/ic

Curves that must be retraced

Xiaoyang Gu®!?, Jack H. Lutz®*?#, Elvira Mayordomo

2 LinkedIn Corporation, 2029 Stierlin Court, Mountain View, CA 94043, USA
Department of Computer Science, lowa State University, Ames, IA 50011, USA
€ Departamento de Informdtica e Ingenieria de Sistemas, Universidad de Zaragoza, 50018 Zaragoza, Spain

¢34

ARTICLEINFO ABSTRACT
Artic{e history: We exhibit a polynomial time computable plane curve I' that has finite length, does not
Received 31 December 2009 intersect itself, and is smooth except at one endpoint, but has the following property. For

Revised 11 October 2010
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length subcurve of I' that f retraces at least m times. In contrast, every computable curve
of finite length that does not intersect itself has a constant-speed (hence non-retracing)
parametrization that is computable relative to the halting problem.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

A curve is a mathematical model of the path of a particle undergoing continuous motion. Specifically, in a Euclidean space
R", a curve is the range I' of a continuous function f : [a, b] — R" for some a < b. The function f, called a parametrization
of T, clearly contains more information than the pointset I', namely, the precise manner in which the particle “traces”
the points f(t) € T as t, which is often considered a time parameter, varies from a to b. When the particle’s motion is
algorithmically governed, the parametrization must be computable (as a function on the reals; see below).

This paper shows that the geometry of a curve I' may force every computable parametrization f of I" to retrace various
parts of its path (i.e., “go back and forth along I"'”) many times, even when I is an efficiently computable, smooth, finite-
length curve that does not intersect itself. In fact, our main theorem exhibits a plane curve I' € R? with the following
properties.

1. T is simple, i.e., it does not intersect itself.

2. T is rectifiable, i.e., it has finite length.

3. T is smooth except at one endpoint, i.e., I' has a tangent at every interior point and a 1-sided tangent at one endpoint,
and these tangents vary continuously along I.

4. T is polynomial time computable in the strong sense that there is a polynomial time computable position function
5:[0,1] — R2 such that the velocity function v = 5" and the acceleration function @ = v’ are polynomial time
computable; the total distance traversed by s is finite; and s parametrizes T, i.e., range(s) = T.

*

Corresponding author.
E-mail addresses: xgu@linkedin.com (X. Gu), lutz@cs.iastate.edu (J.H. Lutz), elvira@unizar.es (E. Mayordomo).
Majority of this author’s contribution was made during his doctoral study at lowa State University.
Research supported in part by National Science Foundation Grants 0344187, 0652569, and 0728806.
Part of this author’s research was performed during a visit at lowa State University, supported by Spanish Government (Secretaria de Estado de Universidades
e Investigacion del Ministerio de Educacién y Ciencia) Grant for research stays PR2007-0368.
4 Research supported in part by the Spanish Ministry of Education and Science (MEC) and the European Regional Development Fund (ERDF) under projects
TIN2005-08832-C03-02 and TIN2008-06582-C03-02.

W=

0890-5401/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2011.01.004


http://dx.doi.org/10.1016/j.ic.2011.01.004
http://www.sciencedirect.com/science/journal/08905401
www.elsevier.com/locate/ic
http://dx.doi.org/10.1016/j.ic.2011.01.004

X. Gu et al. / Information and Computation 209 (2011) 992-1006 993

5. T must be retraced in the sense that every parametrization f : [a, b] — R? of T that is computable in any amount
of time has the following property. For every positive integer m, there exist disjoint, closed subintervals Iy, . . ., I;; of
[a, b] such that the curve 'y = f(Ip) has positive length and f(I;) = I'g for all 1 < i < m. (Hence f retraces I'y at
least m times.)

The terms “computable” and “polynomial time computable” in properties 4 and 5 above refer to the “bit-computability”
model of computation on reals formulated in the 1950s by Grzegorczyk [9] and Lacombe [17], extended to feasible com-
putability in the 1980s by Ko and Friedman [13] and Kreitz and Weihrauch [16], and exposited in the recent paper by
Braverman and Cook [4] and the monographs [5,14,20,23]. As will be shown here, condition 4 also implies that the pointset
I’ is polynomial time computable in the sense of Brattka and Weihrauch [2]. (See also [3,4,23].)

A fundamental and useful theorem of classical analysis states that every simple, rectifiable curve I' has a normalized
constant-speed parametrization, which is a one-to-one parametrization f : [0, 1] — R" of I" with the property that f ([0, t])
has arclength tL forall0 < t < 1, where L is the length of I". (A simple, rectifiable curve I" has exactly two such parametriza-
tions, one in each direction, and standard terminology calls either of these the normalized constant-speed parametrization
f :[0,1] — R" of I". The constant-speed parametrization is also called the parametrization by arclength when it is reformu-
lated as a function f : [0, L] — R" that moves with constant speed 1 along I'.) Since the constant-speed parametrization
does not retrace any part of the curve, our main theorem implies that this classical theorem is not entirely constructive. Even
when a simple, rectifiable curve has an efficiently computable parametrization, the constant-speed parametrization need
not be computable.

In addition to our main theorem, we prove that every simple, rectifiable curve I" in R" with a computable parametrization
has the following two properties:

I. The length of I" is lower semicomputable.
Il. The constant-speed parametrization of I" is computable relative to the length of T".

These two things are not hard to prove if the computable parametrization is one-to-one, (in fact, they follow from results
of Miiller and Zhao [19] in this case) but our results hold even when the computable parametrization retraces portions of
the curve many times.

Taken together, I and II have the following two consequences.

1. The curve I of our main theorem has a finite length that is lower semi-computable but not computable. (The existence
of polynomial-time computable curves with this property was first proven by Ko [15].)

2. Every simple, rectifiable curve I' in R™ with a computable parametrization has a constant-speed parametrization
that is Ag—computable, i.e.,, computable relative to the halting problem. Hence, the existence of a constant-speed
parametrization, while not entirely constructive, is constructive relative to the halting problem.

2. Length, computability, and complexity of curves

In this section, we summarize basic terminology and facts about curves. As we use the terms here, a curve is the range I"
of a continuous function f : [a, b] — R" for some a < b. The function f is called a parametrization of I". Each curve clearly
has infinitely many parametrizations.

A curve is simple if it has a parametrization that is one-to-one, i.e., the curve “does not intersect itself”. The length of a

simple curve I is defined as follows. Let f : [a, b] 5! R7 be a one-to-one parametrization of I'. For each dissection t of
la, b],i.e.,eachtuplet = (tg, ..., tm) Witha =ty < t; < --- < ty, = b, define the f-t-approximate length of T to be

m—1
2y = 3 i) = F@)l.

i=0

Then the length of T is

£(I") = sup £H(I),
t

where the supremum is taken over all dissections tof[a, b].Itis easy to show that £(T") does not depend on the choice of
the one-to-one parametrization f, i.e., that the length is an intrinsic property of the pointset I'.

In Sections 4 and 5 of this paper, we use a more general notion of length, namely, the one-dimensional Hausdorff measure
H1(I"), which is defined for every set ' € R". We refer the reader to [7] for the definition of 7! (T"). It is well known that
HY(I") = £(I") holds for every simple curve I".
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