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A (factor-)reference in a word is a special symbol that refers to another factor in the 
same word; a reference is dereferenced by substituting it with the referenced factor. We 
introduce and investigate the class ref-REG of all languages that can be obtained by taking 
a regular language R and then dereferencing all possible references in the words of R . We 
show that ref-REG coincides with the class of languages defined by regular expressions 
as they exist in modern programming languages like Perl, Python, Java, etc. (often called 
REGEX languages).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that most natural languages contain at least some structure that cannot be described by context-free 
grammars and also with respect to artificial languages, e.g., programming languages, it is often necessary to deal with 
structural properties that are inherently non-context-free (Floyd’s proof (see [10]) that Algol 60 is not context-free is an 
early example). Hence, as Dassow and Păun [8] put it, “the world seems to be non-context-free.” On the other hand, the 
full class of context-sensitive languages, while powerful enough to model the structures appearing in natural languages and 
most formal languages, is often, in many regards, simply too much. Therefore, investigating those properties of languages 
that are inherently non-context-free is a classical research topic, which, in formal language theory is usually pursued in 
terms of restricted or regulated rewriting (see Dassow and Păun [8]), and in computational linguistics mildly context-sensitive
languages are investigated (see, e.g., Kallmeyer [13]).

In [9], Dassow et al. summarise the three most commonly encountered non-context-free features in formal languages 
as reduplication, leading to languages of the form {w w | w ∈ �∗}, multiple agreements, modelled by languages of the form 
{anbncn | n ≥ 1} and crossed agreements, as modelled by {anbmcndm | n, m ≥ 1}. In this work, we solely focus on the first 
such feature: reduplication.

The concept of reduplication has been mainly investigated by designing language generators that are tailored to redu-
plications (e.g., L systems (see Kari et al. [14] for a survey), Angluin’s pattern languages [2] or H-systems by Albert and 
Wegner [1]) or by extending known generators accordingly (e.g., Wijngaarden grammars, macro grammars, Indian parallel 
grammars or deterministic iteration grammars (cf. Albert and Wegner [1] and Bordihn et al. [3] and the references therein)). 
A more recent approach is to extend regular expressions with some kind of copy operation (e.g., pattern expressions by 
Câmpeanu and Yu [6], synchronised regular expressions by Della Penna et al. [15], EH-expressions by Bordihn et al. [3]). 
An interesting such variant are regular expressions with backreferences (REGEX for short), which play a central role in this 
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work. REGEX are regular expressions that contain special symbols that refer to the word that has been matched to a specific 
subexpression. Unlike the other mentioned language descriptors, REGEX seem to have been invented entirely on the level of 
software implementation, without prior theoretical formalisation (see Friedl [12] for their practical relevance). An attempt to 
formalise and investigate REGEX and the class of languages they describe from a theoretical point of view has been started 
recently (see [4,6,16,11]). This origin of REGEX from applications renders their theoretical investigation difficult. As pointed 
out by Câmpeanu and Santean in [5], “we observe implementation inconsistencies, ambiguities and a lack of standard se-
mantics.” Unfortunately, to at least some extent, these conceptional problems inevitably creep into the theoretical literature 
as well.

Regular expressions often serve as a user interface for specifying regular languages, since finite automata are not easily 
defined by human users. On the other hand, due to their capability of representing regular languages in a concise way, 
regular expressions are deemed inappropriate for implementations and sometimes for proving theoretical results about 
regular languages (e.g., certain closure properties or decision problems). We encounter a similar situation with respect to 
REGEX (which, basically, are a variant of regular expressions), i.e., their widespread implementations suggest that they are 
considered practically useful for specifying languages, but the theoretical investigation of the language class they describe 
proves to be complicated. Hence, we consider it worthwhile to develop a characterisation of this language class, which is 
independent from actual REGEX.

To this end, we introduce the concept of unresolved reduplications on the word level. In a fixed word, such a reduplication 
is represented by a pointer or reference to a factor of the word and resolving or dereferencing such a reference is done by 
replacing the pointer by the value it refers to, e.g.,

where the symbols x, y and z are pointers to the factors marked by the brackets labelled with x, y and z, respectively. 
Resolving the references x and y yields abacbcbaccbzcba and resolving reference z leads to abacbcbaccbbaccbcba. 
Such words are called reference-words (or ref-words, for short) and sets of ref-words are ref-languages. For a ref-word w , 
D(w) denotes the word w with all references resolved and for a ref-language L, D(L) = {D(w) | w ∈ L}. We shall investigate 
the class of ref-regular languages, i.e., the class of languages D(L), where L is both regular and a ref-language, and, as our 
main result, we show that it coincides with the class of REGEX languages. Furthermore, by a natural extension of classical 
finite automata, we obtain a very simple automaton model, which precisely describes the class of ref-regular languages 
(= REGEX languages). This automaton model is used in order to introduce a subclass of REGEX languages, that, in contrast 
to other recently investigated such subclasses, has a polynomial time membership problem and we investigate the closure 
properties of this subclass. As a side product, we obtain a very simple alternative proof for the closure of REGEX languages 
under intersection with regular languages; a known result, which has first been shown by Câmpeanu and Santean [5] by 
much more elaborate techniques.

2. Definitions

Let N = {1, 2, 3, . . .} and N0 = N ∪ {0}. For an alphabet B , the symbol B+ denotes the set of all non-empty words over 
B and B∗ = B+ ∪ {ε}, where ε is the empty word. For the concatenation of two words w1, w2 we write w1 · w2 or simply 
w1 w2. We say that a word v ∈ B∗ is a factor of a word w ∈ B∗ if there are u1, u2 ∈ B∗ such that w = u1 vu2. For any word 
w over B , |w| denotes the length of w , for any b ∈ B , by |w|b we denote the number of occurrences of b in w and for any 
A ⊆ B , we define |w|A = ∑

b∈A |w|b .
We use regular expressions as they are commonly defined (see, e.g., Yu [18]). By DFA and NFA, we refer to the set 

of deterministic and nondeterministic finite automata. Depending on the context, by DFA and NFA we also refer to an 
individual deterministic or nondeterministic automaton, respectively.

For any language descriptor D , by L(D) we denote the language described by D and for any class D of language descrip-
tors, let L(D) = {L(D) | D ∈ D}. In the whole paper, we assume � to be an arbitrary finite alphabet with {a, b, c, d} ⊆ �.

We next formally define the concept of reference-words that is intuitively described in the introduction.

2.1. References in words

Let � = {[xi
, ]xi

, xi | i ∈ N}, where, for every i ∈N, the pairs of symbols [xi
and ]xi

are parentheses and the symbols xi are 
variables. For the sake of convenience, we shall sometimes also use the symbols x, y and z to denote arbitrary variables. 
A reference-word over � (or ref-word, for short) is a word over the alphabet (� ∪ �). For every i ∈ N, let hi : (� ∪ �)∗ →
(� ∪ �)∗ be the morphism with hi(z) = z for all z ∈ {[xi

, ]xi
, xi}, and hi(z) = ε for all z /∈ {[xi

, ]xi
, xi}. A reference word w is 

valid if, for every i ∈N,

hi(w) = x�1
i [xi

]xi
x�2

i [xi
]xi

x�3
i . . . x

�ki−1

i [xi
]xi

x
�ki
i , (1)

for some ki ∈ N and � j ∈ N0, 1 ≤ j ≤ ki . Intuitively, a ref-word w is valid if, for every i ∈ N, there is a number of matching 
pairs of parentheses [xi

and ]xi
that are not nested and, furthermore, no occurrence of xi is enclosed by such a matching 
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