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We present dynamic I/O automata (DIOA), a compositional model of dynamic systems. In 
DIOA, automata can be created and destroyed dynamically, as computation proceeds, and 
an automaton can dynamically change its signature, i.e., the set of actions in which it can 
participate.
DIOA features operators for parallel composition, action hiding, action renaming, a notion 
of automaton creation, and a notion of behavioral subtyping by means of trace inclusion. 
DIOA can model mobility, using signature modification, and is hierarchical: a dynamically 
changing system of interacting automata is itself modeled as a single automaton.
We also show that parallel composition, action hiding, action renaming, and (subject to 
some technical conditions) automaton creation are all monotonic with respect to trace 
inclusion: if one component is replaced by another whose traces are a subset of the former, 
then the set of traces of the system as a whole can only be reduced.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many modern distributed systems are dynamic: they involve changing sets of components, which are created and de-
stroyed as computation proceeds, and changing capabilities for existing components. For example, programs written in 
object-oriented languages such as Java involve objects that create new objects as needed, and create new references to 
existing objects. Mobile agent systems involve agents that create and destroy other agents, travel to different network loca-
tions, and transfer communication capabilities.

To describe and analyze such distributed systems rigorously, one needs an appropriate mathematical foundation: a state-
machine-based framework that allows modeling of individual components and their interactions and changes. The frame-
work should admit standard modeling methods such as parallel composition and levels of abstraction, and standard proof 
methods such as invariants and simulation relations. As dynamic systems are even more complex than static distributed 
systems, the development of practical techniques for specification and reasoning is imperative. For static distributed sys-
tems and concurrent programs, compositional reasoning is proposed as a means of reducing the proof burden: reason about 
small components and subsystems as much as possible, and about the large global system as little as possible. For dynamic 
systems, compositional reasoning is a priori necessary, since the environment in which dynamic software components (e.g., 
software agents) operate is continuously changing. For example, given a software agent B , suppose we then refine B to 
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generate a new agent A, and we prove that A’s externally visible behaviors are a subset of B ’s. We would like to then 
conclude that replacing B by A, within any environment does not introduce new, and possibly erroneous, behaviors.

One issue that arises in systems where components can be created dynamically is that of clones. Suppose that a particular 
component is created twice, in succession. In general, this can result in the creation of two (or more) indistinguishable 
copies of the component, known as clones. We make the fundamental assumption in our model that this situation does not 
arise: components can always be distinguished, for example, by a logical timestamp at the time of creation. This absence 
of clones assumption does not preclude reasoning about situations in which an automaton A1 cannot be distinguished 
from another automaton A2 by the other automata in the system. This could occur, for example, due to a malicious host 
which “replicates” agents that visit it. We distinguish between such replicas at the meta-theoretic level by assigning unique 
identifiers to each. These identifiers are not available to the other automata in the system, which remain unable to tell A1
and A2 apart, for example in the sense of the “knowledge” [16] about A1 and A2 which the other automata possess.

Static mathematical models like I/O automata [24] could be used to model dynamic systems, with the addition of some 
extra structure (special Boolean flags) for modeling dynamic aspects. For example, in [22], dynamically-created transactions 
were modeled as if they existed all along, but were “awakened” upon execution of special create actions. However, dynamic 
behavior has by now become so prevalent that it deserves to be modeled directly. The main challenge is to identify a small, 
simple set of constructs that can be used as a basis for describing most interesting dynamic systems.

In this paper, we present our proposal for such a model: the Dynamic I/O Automaton (DIOA) model. Our basic idea is to 
extend I/O automata with the ability to change their signatures dynamically, and to create other I/O automata. We then 
combine such extended automata into global configurations. Our model provides:

1. parallel composition, action hiding, and action renaming operators;
2. the ability to dynamically change the signature of an automaton; that is, the set of actions in which the automaton can 

participate;
3. the ability to create and destroy automata dynamically, as computation proceeds; and
4. a notion of externally visible behavior based on sets of traces.

Our notion of externally visible behavior provides a foundation for abstraction, and a notion of behavioral subtyping by 
means of trace inclusion. Dynamically changing signatures allow us to model mobility, by enforcing the constraint that only 
automata at the same location may synchronize on common actions. This capability is not present in a static model with 
extra structure (e.g., boolean flags). Modeling a mobile agent in a static setting would be difficult at best, and would result 
in a contrived and over-complicated model (how would you simulate location and signature change?) that would lose the 
benefits of simple and direct representation that our model affords.

Our model is hierarchical: a dynamically changing system of interacting automata is itself modeled as a single automaton 
that is “one level higher.” This can be repeated, so that an automaton that represents such a dynamic system can itself be 
created and destroyed. This allows us to model the addition and removal of entire subsystems with a single action. This 
would also be quite difficult to represent naturally in a static model.

As in I/O automata [24,25], there are three kinds of actions: input, output, and internal. A trace of an execution results 
by removing all internal actions, replacing each state by its external signature (i.e., the input and output actions), and finally 
replacing blocks of identical external signatures by a single representative. We use the set of traces of an automaton as our 
notion of external behavior. We show that parallel composition is monotonic with respect to trace inclusion: if we have two 
systems A = A1 ‖ · · · ‖ Ai ‖ · · · ‖ An and A′ = A1 ‖ · · · ‖ A′

i ‖ · · · ‖ An consisting of n automata, executing in parallel, then if 
the traces of Ai are a subset of the traces of A′

i (which it “replaces”), then the traces of A are a subset of the traces of A′ . 
We also show that action hiding (convert output actions to internal actions) and action renaming (change action names 
using an injective map) are monotonic with respect to trace inclusion, and, finally, we show that, if we have a system X
in which an automaton A is created, and a system Y in which an automaton B is created “instead of A”, and if the traces 
of A are a subset of the traces of B , then the traces of X will be a subset of the traces of Y , but only under certain 
conditions. Specifically, systems X and Y must create A and B , respectively, in “corresponding” states. A state of X and a 
state of Y correspond iff they are the last states of finite executions of X and Y which have the same trace. Otherwise, 
monotonicity of trace inclusion can be violated by having the system X create the replacement A in more contexts than 
those in which Y creates B , resulting in X possessing some traces which are not traces of Y . This phenomenon appears to 
be inherent in situations where the creation of new automata can depend upon global conditions (as in our model) and 
can be independent of the externally visible behavior (trace). Our monotonicity results imply that trace equivalence is a 
congruence with respect to parallel composition, action hiding, and action renaming.

Our results enable a refinement methodology for dynamic systems that is independent of specific methods of establishing 
trace inclusion. Different automata in the system can be refined using different methods, e.g., different simulation relations 
such as forward simulations or backward simulations, or by using methods not based on simulation relations. This provides 
more flexibility in refinement than a methodology which, for example, shows that forward simulation is monotonic with 
respect to parallel composition, since in the latter every automaton must be refined using forward simulation.

We defined the DIOA model initially to support the analysis of mobile agent systems, in a joint project with researchers 
at Nippon Telephone and Telegraph. Creation and destruction of agents are modeled directly within the DIOA model. Other 
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