
Information and Computation 249 (2016) 76–109

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

A general SOS theory for the specification of probabilistic 

transition systems

Pedro R. D’Argenio a,∗, Daniel Gebler b, Matias David Lee a,1

a FaMAF, Universidad Nacional de Córdoba – CONICET, Ciudad Universitaria, X5000HUA – Córdoba, Argentina
b Dept. of Computer Science, VU University Amsterdam, De Boelelaan 1081a, NL-1081 HV Amsterdam, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 February 2015
Received in revised form 11 November 2015
Available online 17 March 2016

Keywords:
SOS
Probabilistic transition systems
Bisimulation
Congruence
Rule format
Full abstraction

This article focuses on the formalization of the structured operational semantics approach 
for languages with primitives that introduce probabilistic and non-deterministic behavior. 
We define a general theoretic framework and present the ntμfθ/ntμxθ rule format that 
guarantees that bisimulation equivalence (in the probabilistic setting) is a congruence for 
any operator defined in this format. We show that the bisimulation is fully abstract w.r.t. 
the ntμfθ/ntμxθ format and (possibilistic) trace equivalence in the sense that bisimulation 
is the coarsest congruence included in trace equivalence for any operator definable within 
the ntμfθ/ntμxθ format (in other words, bisimulation is the smallest congruence relation 
guaranteed by the format). We also provide a conservative extension theorem and show 
that languages that include primitives for exponentially distributed time behavior (such as 
IMC and Markov automata based language) fit naturally within our framework.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Structural operational semantics (SOS for short) [1] is a powerful tool to provide semantics to programming languages. 
In SOS, process behavior is described using transition systems and the behavior of a composite process is given in terms of 
the behavior of its components. SOS has been formalized using an algebraic framework as Transition Systems Specifications 
(TSS) [2–6, etc.]. Basically, a TSS contains a signature, a set of actions or labels, and a set of rules. The signature defines 
the terms in the language. The set of actions represents all possible activities that a process (i.e., a term over the signature) 
can perform. The rules define how a process should behave (i.e., perform certain activities) in terms of the behavior of 
its subprocesses, that is, the rules define compositionally the transition system associated to each term of the language. 
A particular focus of these formalizations was to provide a meta-theory that ensures a diversity of semantic properties 
by simple inspection on the form of the rules. Thus, there are results on congruences and full abstraction, conservative 
extension, security, etc. (See [7,6,8] for overviews and references therein.)

In this article we focus on congruence and full abstraction. A congruence theorem guarantees that whenever the rules 
of a TSS are in a particular format, then a designated equivalence relation is preserved by every context in the signature of 
such TSS. Thus, for instance, strong bisimulation equivalence [9] is a congruence on any TSS in the ntyft/ntyxt format [4]. 
Full abstraction is a somewhat dual result. An equivalence relation is fully abstract with respect to a language and a given 
equivalence relation ≡ if it is the largest relation included in ≡ that is a congruence for all operators in the language [10]. 

* Corresponding author.
E-mail addresses: dargenio@famaf.unc.edu.ar (P.R. D’Argenio), e.d.gebler@vu.nl (D. Gebler), lee@famaf.unc.edu.ar, matias-david.lee@ens-lyon.fr (M.D. Lee).

1 Current address: LIP, Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, INRIA, Université Claude-Bernard Lyon 1, France.

http://dx.doi.org/10.1016/j.ic.2016.03.009
0890-5401/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2016.03.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:dargenio@famaf.unc.edu.ar
mailto:e.d.gebler@vu.nl
mailto:lee@famaf.unc.edu.ar
mailto:matias-david.lee@ens-lyon.fr
http://dx.doi.org/10.1016/j.ic.2016.03.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2016.03.009&domain=pdf


P.R. D’Argenio et al. / Information and Computation 249 (2016) 76–109 77

This notion can be straightforwardly extended to a TSS format by considering all definable languages in such format: an 
equivalence relation is fully abstract with respect to a particular format and an equivalence relation ≡ if it is the largest 
relation included in ≡ that is a congruence for all operators whose semantics is defined by a TSS in that format [10]. For 
example, strong bisimilarity is fully abstract w.r.t. the ntyft/ntyxt format [4] but not w.r.t. the tyft/tyxt format [2] or the GSOS 
format [3].

The introduction of probabilistic process algebras [11–13, etc.] motivated the need for a theory of structural opera-
tional semantics to define probabilistic transition systems. Previous to the introduction of our format [14], few results have 
appeared in this direction [15–18] presenting congruence theorems for (probabilistic) bisimilarity [19,20], but no full ab-

straction result. All previously mentioned studies consider transitions in the form of a quadruple denoted by t
a,q−−→ t′ , where 

t and t′ are terms in the language, a is an action or label, and q ∈ (0, 1] is a probability value. A transition of that form 
denotes that term t can perform an action a and with probability q continue with the execution of t′ . Moreover, it is re-
quired that πt,a , defined by πt,a(t′) =∑

t
a,q−→t′ q, is a probability distribution. (This interpretation corresponds to the reactive 

view, it varies under the generative view [12].) This notation introduces several problems. The first one is that the transition 
relation cannot be treated as a set because two different derivations may yield the same quadruple. This requires artifacts 
like multisets or bookkeeping indexes. The second problem is that formats need to be defined jointly on a set of rules rather 
than a single rule to ensure that πt,a is a probability distribution. (Notice that πt,a depends on a set of transitions which 
are obtained using different rules.)

Rather than following this approach, we directly represent transitions as a triple t a−→ πt,a . Thus, a single triple contains 
the complete information of the probabilistic jump. Moreover, this representation also allows for non-determinism in the 
sense that if t a−→ π and t a−→ π ′ not necessarily π = π ′ as requested by reactive systems. Hence, our probabilistic transition 
system specifications (PTSS) define objects very much like Segala’s probabilistic automata [21]. More precisely we represent 
transitions using two different sorts, one that represent states and the other distributions. Thus a labeled transition t a−→ θ

goes from one state term t to a distribution term θ . If θ is a closed term, then its interpretations �θ � is a probability distri-
bution on state terms. By having a two-sorted signature, operations can be parameterized on distributions, and moreover, 
we can neatly express open terms in the rules of the PTSS. So, each (probabilistic) transition t

a−→ θ is obtained as a con-
sequence of a single derivation in our PTSSs, and hence formats focus on single rules (as it is the case for non-probabilistic 
TSSs). This significantly eases the inspection of the format. In addition, a byproduct of this choice is that the proof strategies 
for the majority of the lemmas and theorems of this article are much the same as those for their non-probabilistic relatives. 
We observe that this way of representing transitions in rules for process algebra has already appeared in [22], it is also used 
in the Segala-GSOS format [16] and it is pretty much related to bialgebraic approaches to SOS [16,23].

More precisely, the contributions on this article are:

1. We introduce PTSS with negative and quantitative premises and the possibility of lookahead (Section 3). It uses a 
two-sorted term algebra to represent the language, where the distribution sort is aimed to be interpreted as a probability 
distribution on the state sort. (Section 2.)

2. We use here the most general method to give meaning to PTSSs: we adapt the definition of least 3-valued stable 
models [5,24] to our setting and only limit to complete PTSSs when a 2-valued model is required. (Section 3.)

3. We introduce the ntμfθ/ntμxθ format in Section 4 and show through carefully crafted examples that each of the restric-
tions of the format is effectively needed to ensure that bisimulation is a congruence. Moreover, we present a shorthand 
notation that significantly simplifies the verification of the restrictions, making the format almost as easy to check as 
the ntyft/ntyxt format [4,5].

4. We give a detailed proof that bisimulation is a congruence for any operator defined within the ntμfθ/ntμxθ format as 
long as every rule is well-founded. (Section 5.)

5. We adapt the concept of conservative extension [2,8] to our probabilistic setting. Conservative extensions allow to modu-
larly extend a language preserving all the behavioral properties of the original terms. We also provide a general theorem 
that guarantees that an extension is conservative. This is presented in Section 6.

6. We show that bisimulation equivalence is fully abstract with respect to the ntμfθ/ntμxθ format and trace equivalence, 
that is, it is the coarsest congruence w.r.t. any operator definable in (complete) ntμfθ/ntμxθ PTSSs (Section 7).

7. Finally, we discuss some expressiveness issues. Notably, we show that the theory extends immediately to IMCs [25]
and Markov automata [26]. We also provide a format that guarantees that the model of the PTSS is indeed a Markov 
automaton. (Section 8.)

Besides reporting the full proofs, this article extends, improves and correct the work already presented in [14]. In fact, 
several mistakes were inadvertently introduced there. Some modifications have already been introduced in [27] but also 
there we have introduced some error. That is why we briefly report the differences and corrections in Appendix A.

2. Preliminaries

Let S = {s, d} be a set denoting two sorts. Elements of sort s ∈ S are intended to represent states in the transition system, 
while elements of sort d ∈ S will represent distributions over states. We let σ range over S .



Download English Version:

https://daneshyari.com/en/article/426974

Download Persian Version:

https://daneshyari.com/article/426974

Daneshyari.com

https://daneshyari.com/en/article/426974
https://daneshyari.com/article/426974
https://daneshyari.com

