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In this paper we establish an algorithmic framework between bin packing and strip 
packing, with which strip packing can be very well approximated by applying some bin 
packing algorithms. More precisely we obtain the following results: (1) Any off-line bin 
packing algorithm can be applied to strip packing maintaining almost the same asymptotic 
worst-case ratio. (2) A class of Harmonic-based algorithms for bin packing, such as Refined 
Harmonic, Modified Harmonic, Harmonic++, can be applied to online strip packing. In 
particular, we show that online strip packing admits an upper bound of 1.58889 + ε on 
the asymptotic competitive ratio, for any arbitrarily small ε > 0. This significantly improves 
the previously best bound of 1.6910 and affirmatively answers an open question posed by 
Csirik and Woeginger (1997). Moreover, the time complexity mainly depends on a sorting 
procedure and the bin packing algorithms employed.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In strip packing a set of rectangles with widths and heights both upper bounded by 1, is packed into a strip with width 
1 and infinite height. Rectangles must be packed such that no two rectangles overlap with each other and the sides of the 
rectangles are parallel to the strip sides. Rotations are not allowed. The objective is to minimize the height of the strip 
needed to pack all the given rectangles. If we know all rectangles before constructing a packing, then this problem is offline. 
In contrast, in online strip packing rectangles are coming one by one and a placement decision for the current rectangle 
must be done before the next rectangle appears. Once a rectangle is packed its placement is permanent.

It is well known that strip packing is a generalization of bin packing. Namely if we restrict all input rectangles to be of 
the same height, then strip packing can be regarded as bin packing. Thus any negative results for bin packing remain true 
for strip packing. More precisely, strip packing is NP-hard in the strong sense and the asymptotic lower bound 1.5401 [16]
is valid for online strip packing.

✩ A preliminary version appeared in Proceedings of the 3rd International Conference on Algorithmic Aspects in Information and Management (AAIM), pp. 
358–367, 2007.
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Previous results For the offline version Coffman et al. [4] presented the algorithms NFDH (Next Fit Decreasing Height) and 
FFDH (First Fit Decreasing Height), and showed that the respective asymptotic worst-case ratios are 2 and 1.7. Golan [6] and 
Baker et al. [2] found better algorithms with worst case ratios of 4/3 and 5/4, respectively. Using linear programming and 
random techniques, an asymptotic fully polynomial time approximation scheme (AFPTAS) was given by Kenyon and Rémila 
[9]. For the online version Baker and Schwarz [3] introduced an online strip packing strategy called a shelf algorithm. A shelf 
is a rectangular part of the strip with width one and height at most one so that (i) every rectangle is either completely 
inside or completely outside of the shelf and (ii) every vertical line through the shelf intersects the interior of at most one 
rectangle. Shelf packing is an elegant idea to exploit bin packing algorithms. By employing bin packing algorithms Next Fit
and First Fit, Baker and Schwarz [3] obtained the asymptotic competitive ratios arbitrarily close to 2 and 1.7, respectively. 
This idea was extended to the Harmonic shelf algorithm by Csirik and Woeginger [5], making the asymptotic competitive 
ratio arbitrarily close to h∞ ≈ 1.6910. Moreover it was shown that h∞ is the best upper bound a shelf algorithm can 
achieve, no matter what online bin packing algorithm is used. In the late 80s and early 90s, online bin packing algorithms 
with asymptotic competitive ratios better than h∞ were presented [10–12,17]. However, it was not known whether these 
online algorithms could be adapted to the online strip packing problem [5].

The core of shelf packing is reducing the two-dimensional problem to the one-dimensional problem. Basically shelf 
algorithms consist of two steps. The first one is shelf design which only takes the heights of rectangles into account. One 
shelf can be regarded as a bin with a specific height. The second step is packing into a shelf, where rectangles with similar 
heights are packed into the same shelves. This step is done by employing some bin packing algorithm to pack the rectangles 
with a total width upper bounded by one into a shelf. Clearly, to maintain the quality of bin packing algorithms in shelf 
packing we must improve the first step.

Our contribution We propose a batch packing strategy and establish a general algorithmic framework between bin packing 
and strip packing. It is shown that any offline bin packing algorithm can be used for offline strip packing maintaining almost 
the same asymptotic worst-case ratio. As an example, the well known bin packing algorithm FFD can be adapted to approx-
imate strip packing with an asymptotic worst-case ratio of 11/9 + ε , for any ε > 0, where the running time is O (n log n). 
A simple asymptotic fully time approximation scheme (AFPTAS) for strip packing can be derived by our techniques using 
the AFPTAS of [8] for bin packing as a black box.

For the online case, we can apply the Super Harmonic algorithms [13] to online strip packing. It implies that the known 
Harmonic-based bin packing algorithms [10–13] can be converted into online strip packing algorithms. In particular, strip 
packing admits an online algorithm with asymptotic performance bound of 1.58889 + ε , for any given ε > 0, by employing 
Seiden’s Harmonic++ algorithm [13], which is the current champion for online bin packing. Our result affirmatively answers 
the open question in [5]

Main ideas Recall that strip packing becomes bin packing if all rectangles have the same height. This motivates us to 
convert the strip packing problem into the bin packing problem by constructing a set of new rectangles called boxes with 
the same height by bundling a subset of items. Then we just call the algorithm in the bin packing problem to pack the 
generated boxes into the strip. More precisely, in the offline case, we pack in batch the rectangles with similar width on 
top of each other into rectangular boxes of pre-specified height of c, where c > 1 is a sufficiently large constant. Then we 
obtain a set of new rectangles (boxes) of the same height. The next step is to use bin packing algorithms on the new set. 
In the on-line case the strategy is slightly different. We divide the rectangles into two groups according to their widths, to 
which we apply the above batching strategy and the standard shelf algorithms, respectively.

Asymptotic worst-case (competitive) ratio To evaluate online or offline approximation algorithms for strip packing and bin 
packing we use the standard measure defined as follows.

Given an input list L and an approximation algorithm A, we denote by OPT(L) and A(L), respectively, the height of the 
strip (the number of bins) used by an optimal offline algorithm and the height of the strip (the number of bins) used by 
algorithm A for packing list L.

The asymptotic worst-case ratio R∞
A of algorithm A is defined by

R∞
A = lim sup

n→∞
max

L
{A(L)/OPT(L)|OPT(L) = n}.

For online algorithms, the asymptotic worst-case ratio is also referred as the “competitive ratio”.

2. The offline problem

Given a rectangle R , throughout the paper, we use w(R) and h(R) to denote its width and height, respectively.

Fractional strip packing A fractional strip packing of L is a packing of any list L f obtained from L by subdividing some of 
its rectangles by horizontal cuts: a rectangle (w, h) can be replaced by a sequence (w, h1), (w, h2), . . . , (w, hk) of rectangles 
such that h = ∑k

i=1 hi .
The following lemma is from Section 3.1 of the reference paper [9].
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