
Information and Computation 249 (2016) 205–236

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Synthesis of positive logic programs for checking a class 

of definitions with infinite quantification

Francisco J. Galán ∗, José M. Cañete-Valdeón

Dept. of Languages and Computer Systems, Faculty of Computer Science, Av. Reina Mercedes s/n, 41012, Seville, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 June 2010
Received in revised form 24 October 2013
Available online 16 June 2016

Keywords:
Program assertion
Logic program
Program synthesis
Unfold/fold transformation

We describe a method based on unfold/fold transformations that synthesizes positive logic 
programs P (r) with the purpose of checking mechanically definitions of the form D(r) =
∀X(r(X) ⇔ Q Y R(X, Y )) where r is the relation defined by the formula Q Y R(X, Y ), X is a 
set of variables to be instantiated at runtime by ground terms, Q Y is a set of quantified 
variables on infinite domains (Q is the quantifier) and R(X, Y ) a quantifier-free formula 
in the language of a first-order logic theory. This work constitutes a first step towards the 
construction of a new type of assertion checkers with the ability of handling restricted 
forms of infinite quantification.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

An assertion is a logic formula representing a condition the program-being-tested must satisfy in each of its executions. 
Current technology is not able to check assertions containing some kind of infinite quantification [36,40,5,29,33,30,61,50]. 
However, infinite quantification has shown to be a useful resource for expressing program states in a declarative way [20,
17,26,18]. For instance, the following assertion formalizes the subset relation between a program variable L and a program 
variable S where member(X, Y ) is true if a natural number X is included in a sequence of natural numbers Y and false 
otherwise:

∀E(member(E, L) ⇒ member(E, S))

Despite its simplicity, the sub-expression ∀E formalizes a quantification over the infinite set of natural numbers. This 
kind of quantification is not recognized by current assertion checkers.

To palliate this lack of expressivity in current assertion languages, we propose the use of a class of assertion definitions 
of the form D(r) = ∀X(r(X) ⇔ Q Y R(X, Y )) where r is the relation defined by the assertion Q Y R(X, Y ), X is a set of 
variables to be instantiated at runtime by ground terms, Q Y is a set of quantified variables on infinite domains (Q is the 
quantifier) and R(X, Y ) a quantifier-free formula in the language of a typed first-order logic theory. For instance,

D(subset) = ∀L, S(subset(L, S) ⇔ ∀E(member(E, L) ⇒ member(E, S)))

is an assertion definition written in the language of the following typed first-order logic theory:

* Corresponding author.
E-mail address: galanm@us.es (F.J. Galán).

http://dx.doi.org/10.1016/j.ic.2016.06.014
0890-5401/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2016.06.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:galanm@us.es
http://dx.doi.org/10.1016/j.ic.2016.06.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2016.06.014&domain=pdf


206 F.J. Galán, J.M. Cañete-Valdeón / Information and Computation 249 (2016) 205–236

Theory T0
——————————————————————————————————————-
Types

Nat generated by zero :→ Nat succ : Nat → Nat
Seq generated by empty :→ Seq seq : Nat × Seq → Seq

Predicates
Signature: id : Nat × Nat
Axioms:
1. id(zero, zero) ⇔ true 2. ∀(id(succ(X), zero) ⇔ f alse)
3. ∀(id(zero, succ(Y )) ⇔ f alse) 4. ∀(id(succ(X), succ(Y )) ⇔ id(X, Y ))

Signature: member : Nat × Seq
Axioms:
5. ∀(member(E, empty) ⇔ f alse)
6. ∀(member(E, seq(X, Y )) ⇔ id(E, X) ∨ member(E, Y ))

——————————————————————————————————————-

The rationale of our proposal is the following. Given an assertion definition D(r) = ∀X(r(X) ⇔ Q Y R(X, Y )), we pro-
pose to synthesize a positive logic program P (r) for checking (runtime) assertions of the form r(X)θ , being θ a ground 
substitution for X . The high-level design of P (r) will depend on the quantifier Q in D(r). If Q = ∀ then P (r) will 
be a program which searches for refutations and if Q = ∃ then P (r) will be a program which searches for proofs. In 
concrete terms, P (r) is implemented by a clause ∀(r(X) ⇐ r1(X, Y )) which defines r in terms of a new relation sym-
bol r1. This new relation is defined by a positive logic program P (r1) which is synthesized from an auxiliary specification 
S(r1) = ∀X, Y (r1(X, Y ) ⇔ ¬R(X, Y )) if Q = ∀ or from an auxiliary specification S(r1) = ∀X, Y (r1(X, Y ) ⇔ R(X, Y )) if Q = ∃. 
For instance, P (subset1) is synthesized from the following auxiliary specification:

S(subset1) = ∀E, L, S(subset1(E, L, S) ⇔ ¬(member(E, L) ⇒ member(E, S)))

For synthesizing positive logic programs, we follow the so-called transformational approach [19,20]. Most of the program 
synthesis methods proposed in the literature [3,14,16,19,20,28,43,47,49] are of theoretical nature or require human inter-
vention. By contrast, our proposal is similar in spirit to the ones described in [13,54] where programs are derived from a 
restricted class of specifications in a completely automatic manner.

Our synthesis method must satisfy two main requirements: (1) the synthesis process must be terminating, that is, P (r1)

must be synthesized in a finite amount of transformation steps and (2) the synthesized programs (i.e. P (r1)) must preserve 
total correctness wrt the class of goals ⇐ r1(X, Y )θ , that is, ∃Y r1(X, Y )θ is true if and only if P (r1) ∪ {⇐ r1(X, Y )θ} has an 
SLD-refutation [37].

In our example, P (assert1) has been synthesized after five transformation steps resulting the following program:

Synthesized program P (subset1)

————————————————————————————————————
∀(subset1(E, seq(X, Y ), S) ⇐ subset2(E, S) ∧ subset3(E, X))

∀(subset1(E, seq(X, Y ), S) ⇐ subset1(E, Y , S) ∧ subset4(E, X))

∀(subset1(E, empty, S) ⇐ subset5(E, S))

∀(subset2(E, seq(X, Y )) ⇐ subset2(E, Y ) ∧ subset4(E, X))

∀(subset2(E, empty) ⇐ subset7)

subset3(zero, zero) ⇐ subset9
∀(subset3(succ(X), succ(Y )) ⇐ subset3(X, Y ))

∀(subset4(zero, succ(Y )) ⇐ subset9)

∀(subset4(succ(X), succ(Y )) ⇐ subset4(X, Y ))

∀(subset4(succ(X), zero) ⇐ subset9)

∀(subset5(E, seq(X, Y )) ⇐ subset5(E, Y ) ∧ subset4(E, X))

subset7 ⇐
subset9 ⇐
————————————————————————————————————

Finally, P (subset) results from the union of P (subset1) and the clause which defines subset in terms of the new relation 
symbol subset1: ∀(subset(L, S) ⇐ subset1(E, L, S)).

As we will see in detail in Sect. 7, for checking a (runtime) assertion r(X)θ , we propose to compute P (r) ∪ {G}, being 
G the goal ⇐ r(X)θ and P (r) the synthesized program for checking D(r). Again, depending on the quantifier Q in D(r), 
we can distinguish two cases: (a) for Q = ∀, we have that r(X)θ is false if the empty answer is computed for P (r) ∪ {G}
(refutation) and r(X)θ is true if no answer is computed for P (r) ∪ {G} (impossibility of refutation) and (b) for Q = ∃, we have 
that r(X)θ is true if the empty answer is computed for P (r) ∪ {G} (proof ) and r(X)θ is false if no answer is computed for 
P (r) ∪ {G} (impossibility of proof ).



Download English Version:

https://daneshyari.com/en/article/426980

Download Persian Version:

https://daneshyari.com/article/426980

Daneshyari.com

https://daneshyari.com/en/article/426980
https://daneshyari.com/article/426980
https://daneshyari.com

