Information Processing Letters 116 (2016) 682-688

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Hardness of peeling with stashes

@ CrossMark

Michael Mitzenmacher !, Vikram Nathan *

@ Harvard University, School of Engineering and Applied Sciences, United States

ARTICLE INFO ABSTRACT

Article history:

Received 12 February 2015

Received in revised form 31 May 2016
Accepted 31 May 2016

Available online 4 June 2016
Communicated by R. Uehara

The analysis of several algorithms and data structures can be framed as a peeling process
on a random graph: vertices with degree less than k and their adjacent edges are removed
until no vertices of degree less than k are left. Often the question is whether the remaining
graph, the k-core, is empty or not. In some settings, it may be possible to remove either
vertices or edges from the graph before peeling, at some cost. For example, in hashing
applications where keys correspond to edges and buckets to vertices, one might use an
additional side data structure, commonly referred to as a stash, to separately handle some
keys in order to avoid collisions. The natural question in such cases is to find the minimum
Graph algorithms number of edges (or vertices) that need to be stashed in order to realize an empty k-core.
Peeling process We show that both these problems are NP-complete for all k > 2, with the sole exception
StE‘Sh. being that the edge variant of stashing is solvable in polynomial time for k = 2 on standard
Hashing (2-uniform) graphs.

Keywords:
NP-complete

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The following peeling process can be used to find the
k-core of a hypergraph: vertices with degree less than
k are repeatedly removed, together with their associated
edges. The k-core is easily shown to be the maximal sub-
graph where each vertex has degree at least k; it is there-
fore uniquely defined and does not depend on the order
vertices are removed in the peeling process. Peeling pro-
cesses, and variations on it, have found applications in
low-density parity-check codes [7,9], hash-based sketches
[3,5,6], satisfiability of random boolean formulae [2,8,10],
and cuckoo hashing [4,11]. Usually in the design of these
algorithms the primary question is whether or not the
k-core is empty, and an empty k-core corresponds to a suc-

* Corresponding author.
E-mail address: nathan.vikram@gmail.com (V. Nathan).
1 Supported in part by NSF grants CCF-0915922, 1IS-0964473, and
CNS-1011840.

http://dx.doi.org/10.1016/j.ipl.2016.05.006
0020-0190/© 2016 Elsevier B.V. All rights reserved.

cess. We say that a hypergraph is k-peelable if it has an
empty k-core.

If the k-core is not empty, a natural question to ask
is how many edges or vertices need to be removed to
yield an empty k-core. This question may have algorith-
mic implications. For example, consider a multiple-choice
hash table of the following form. There are n keys and m
buckets; each key has d possible buckets where it can be
placed; and each bucket can hold at most k—1 keys. By as-
sociating buckets with vertices and keys with hyperedges
(each key being an edge of its d possible buckets), we see
that peeling can naturally provide an assignment of keys
to buckets satisfying the constraints. When a vertex is re-
moved, the bucket obtains all the keys corresponding to
adjacent edges; if the peeling yields an empty hypergraph,
all keys have been placed. In this setting, removing an
edge from the hypergraph before peeling can correspond
to placing a key into a separate structure, often referred to
as a stash. If a suitably sized stash can be implemented,
peeling can efficiently find an assignment, leading to the

http://dx.doi.org/10.1016/j.ipl.2016.05.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:nathan.vikram@gmail.com
http://dx.doi.org/10.1016/j.ipl.2016.05.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.05.006&domain=pdf

M. Mitzenmacher, V. Nathan / Information Processing Letters 116 (2016) 682-688 683

question of how many edges need to be removed so the
remaining hypergraph is k-peelable.> Even without such
algorithmic implications, the minimum number of vertices
or edges to remove to obtain a k-peelable graph appears a
natural and interesting graph theoretic question.

Here we prove that determining the minimum number
of vertices, or the minimum number of edges, that need to
be stashed (removed from the graph) so that a d-regular
hypergraph is k-peelable is NP-complete for any k,d > 2.
The only exception is that, in the case of edges, determin-
ing the minimal stash is solvable in polynomial time for
k =d =2; that is, for 2-cores on standard graphs. Although
we believe the case of k =d =2 is well understood, we
briefly review it Section 3. Given the connection to stashes
for cuckoo hash tables, we call this class of problems stash
problems.

We note that a similar problem was recently consid-
ered in [1]. In their variation, they look at the anchoring
problem: given a budget b, find the subset B of b vertices
such that peeling the graph of vertices from V — B of de-
gree less than k yields the maximum number of remaining
edges. That is, the chosen subset B cannot be peeled, and
serves as an anchor for the k-core. They show that when
k = 2, the problem is solvable in linear time, and when
k > 3 the problem is NP-hard and further is NP-hard to
approximate within an O (n'~€) factor for any constant e.
One way of viewing the anchoring problem is that it adds
to the graph; for example, by replacing a vertex in B by
a clique of size at least k (and appropriately connecting
edges), one can guarantee that vertex is anchored. In con-
trast, our goal in stash problems is to remove vertices or
edges from the graph.

In what follows, we define terms and briefly consider
the case k =d = 2. We then show the problem of find-
ing the optimal stash size when stashing vertices is NP-
complete for k > 2 by a reduction from Vertex Cover. We
then reduce the problem of finding the optimal stash size
for vertices to the problem for edges.

2. Notation and definitions

Recall that we say that a hypergraph is k-peelable
if it has an empty k-core. A k-vertex-stash of a hyper-
graph is a subset of vertices V C G such that G — V
is k-peelable. (Of course removing a vertex also removes
all adjacent edges.) Similarly, a k-edge-stash of a hyper-
graph is a subset of edges E C G such that G — E is
k-peelable. For fixed values k and d, the decision problem
k-VERTEX-STASH(Gy, s) (respectively k-EDGE-STASH(Gy, s))
asks whether the d-regular hypergraph G4 has a mini-
mal k-vertex-stash (respectively k-edge-stash) of size at
most s. We use k-VERTEX-STASH and k-EDGE-STASH where

2 We note that peeling does not completely solve the problem of as-
signing keys to buckets; for example, work on cuckoo hashing shows
that one can do substantially better after peeling on random graphs to
match additional keys to buckets. However, peeling provides a quick way
to create an assignment, and for cuckoo hashing, peeling first maintains
optimality in terms of the number of keys assigned. Because of this, un-
derstanding the limits of peeling in this context appears worthwhile.

the meaning is clear. We note that we could also con-
sider non-regular hypergraphs in this framework as well,
but since stashing on these graphs can easily be reduced
to stashing on regular hypergraphs, we consider only regu-
lar hypergraphs here. We refer to 2-regular hypergraphs as
standard graphs for clarity and convenience. When we say
PROBLEM1 <p PROBLEM2, we mean that there is a poly-
nomial time reduction from PROBLEM1 to PROBLEM2. In
most proofs, we do not explicitly say the reductions can
be done in polynomial time since their implementations
are easily seen to be linear.

3. 2-EDGE-STASH

For standard graphs, the 2-core is empty precisely when
the graph has no cycles. It follows readily that for 2-EDGE-
STASH the minimum number of edges that need to be
removed equals the minimum number of edges that need
to be removed so that the graph has no cycles; this well-
known quantity is the cyclomatic number of the graph,
h(G) = |E| — |V| 4+ (3# connected components in G). We
note h(G) is easily computed in polynomial time by start-
ing with an empty graph, inserting the edges of G one at a
time in any order, and setting aside any edge that forms a
cycle, incrementing h(G) accordingly. (Standard union-find
algorithms can be used to test for cycles.)

As we show later, the corresponding vertex stash prob-
lem for standard graphs is actually NP-complete.

4. k-VERTEX-STASH is NP-complete

To start, it is clear that k-VERTEX-STASH is in NP for any
d-regular hypergraph as the certificate is just the k-vertex-
stash. Also, the standard NP-complete Vertex Cover prob-
lem is the degenerate problem 1-VERTEX-STASH. That is,
since a graph has an empty 1-core if and only if it consists
of a collection of isolated vertices, the smallest number of
vertices to remove for 1-VERTEX-STASH is the size of the
minimum vertex cover. This connection suggests a reduc-
tion from VERTEX COVER.

Definition 1. A vertex cover of G is a set of vertices V such
that all edges in G are adjacent to at least one vertex in V.
The NP-complete decision problem VERTEX-COVER(G, s)
asks if G has a vertex cover of size at most s.

Theorem 1. VERTEX-COVER <p k-VERTEX-STASH for k > 2.

Proof. Given a hypergraph G we construct a hypergraph
G’ by adding vertices and edges to G such that V* is a
minimal vertex cover of G if and only if V* is a minimal
k-vertex-stash of G’. To create G’, we replace every edge
(u,v) by a subgraph Ci(u,v) with the following proper-
ties.

1. u,v e Cy(u, v).

2. Each vertex w € Ci(u, v) has degree at least k.

3. If either u or v is removed, Ci(u,v) has an empty
k-core.

Download English Version:

https://daneshyari.com/en/article/426998

Download Persian Version:

https://daneshyari.com/article/426998

Daneshyari.com

https://daneshyari.com/en/article/426998
https://daneshyari.com/article/426998
https://daneshyari.com/

