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A set of vertices S is a resolving set in a graph if each vertex has a unique array of distances 
to the vertices of S . The natural problem of finding the smallest cardinality of a resolving 
set in a graph has been widely studied over the years. In this paper, we wish to resolve a 
set of vertices (up to � vertices) instead of just one vertex with the aid of the array of dis-
tances. The smallest cardinality of a set S resolving at most � vertices is called �-set-metric 
dimension. We study the problem of the �-set-metric dimension in two infinite classes of 
graphs, namely, the two dimensional grid graphs and the n-dimensional binary hypercubes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, a graph G is finite, undirected, simple 
and connected. As usual, we denote its vertex set by V
and the set of edges by E . The distance between two ver-
tices u, v ∈ V (that is, the number of edges in any shortest 
path joining u and v) is denoted by d(u, v) = dG(u, v). 
Let N(v) = {u ∈ V | d(u, v) = 1} for v ∈ V . The Cartesian 
product of graphs G = (V , E) and H = (V ′, E ′), denoted by 
G�H , is the graph with vertex set V × V ′ = {(a, b) | a ∈ V ,

b ∈ V ′}, where (a, b) is adjacent to (u, v) if a = u and 
the edge {b, v} ∈ E ′ , or b = v and {a, u} ∈ E . The distance 
d((a, b), (u, v)) = dG (a, u) + dH (b, v).

Let S ⊆ V and denote its cardinality by |S|. Let us write 
S as an ordered set S = (s1, s2, . . . , s|S|). For any x ∈ V , we 
denote by

D(x) = DS(x) = (d(x, s1),d(x, s2), . . . ,d(x, s|S|))

the distance array of x with respect to S . If DS (x) �=DS (y)

for any two distinct vertices x and y in V , then S is 
called a resolving set. The concept of a resolving set was 
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introduced independently by Slater [15] and Harary and 
Melter [8]. Resolving sets are widely studied [5,3,4,9,1,6,13]
and these sets have many connections to other diverse 
problems, see for example, network discovery and verifi-
cation [2], robot navigation [10] and connected joins in 
graphs [14]. In [15], each si ∈ S is considered as a site 
for a sonar station, and the location of an object (like an 
intruder in x ∈ V ) is then uniquely determined using its 
distances to stations in D(x).

In this paper, we consider the situation where there 
can be several objects whose locations (the set X ⊆ V ) 
we want to determine simultaneously. Naturally, here each 
sonar si ∈ S measures the distance to the closest vertex 
in the object set X ⊆ V (there can be several objects at 
that particular distance), but reveals no further informa-
tion on the locations or the cardinality of X . Finding sev-
eral objects has earlier been considered in other contexts 
of sensor networks, like in the case of identifying codes 
and locating–dominating sets, where the sensors can de-
tect objects within a fixed radius, see [7,12] and also the 
list in [11].

For any X ⊆ V and v ∈ V , denote d(v, X) = min{d(v, x) |
x ∈ X}. Furthermore, for any X ⊆ V , let the distance array

D(X) = DS(X) = (d(s1, X),d(s2, X), . . . ,d(s|S|, X)).
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Fig. 1. The set S consists of the black vertices.

We write in short, D({x1, . . . , xk}) = D(x1, . . . , xk). Hence 
D(x) means the same distance array as before.

Definition 1. Let G = (V , E) be a finite, undirected, simple 
and connected graph. Let further � be an integer such that 
1 ≤ � ≤ |V |. A subset S ⊆ V is called an �-resolving set (or 
an �-set resolving set) if

D(X) �= D(Y )

for any two distinct and nonempty subsets X, Y ⊆ V with 
|X | ≤ � and |Y | ≤ �.

The minimum cardinality of an �-resolving set of G is 
called the �-set-metric dimension of G and it is denoted by 
β�(G). An �-resolving set of cardinality β�(G) is called an 
�-set-metric basis of G . Clearly, a 1-resolving set is the usual 
resolving set, and the set S = V is always an �-resolving 
set for all 1 ≤ � ≤ |V |.

Example 2.

(i) Let us consider the graph of Fig. 1(a). Take the set 
S = {v2, v3, v5, v6}. It is easy to check that S is a 
1-resolving set, and D(v4) = (1, 1, 1, 1). If we receive 
the distance array (1, 1, 1, 1), we immediately con-
clude that the object (like an intruder) is in v4. How-
ever, if there are two objects (intruders), say in v1
and v7, we can falsely make that decision and no in-
truder is found, since also D(v1, v7) = (1, 1, 1, 1).

(ii) Denote a path on n ≥ 2 vertices by Pn and write 
the vertices as an ordered set Pn = (v1, v2, . . . , vn). 
The set S = {v1, vn} is a 2-resolving set as we will 
show next. Let X ⊆ {v1, . . . , vn} and 1 ≤ |X | ≤ 2. Now 
D(X) = (a, b) for some 0 ≤ a, b ≤ n − 1 (here S =
(v1, vn) is considered as an ordered set). If a + b =
n − 1, then there X consists of one vertex, namely, 
v1+a . On the other hand, if a + b < n − 1, then there 
are two vertices in X , namely, X = {vi+a, vn−1−b}. 
Consequently, β2(Pn) ≤ 2. Moreover, the 2-set-metric 
dimension β2(Pn) = 2. Indeed, if S = {vi} for some 
1 ≤ i ≤ n, then D(vi) = (0) = D(vi, v j) for any j �= i, 
j = 1, . . . , n.

(iii) Consider then the complete graph K4 of Fig. 1(b). We 
will show that a set S �= V cannot be a 2-resolving 
set. Without loss of generality, say v4 /∈ S for some 
2-resolving set S . Notice that if we add vertices to a 
2-resolving set, it remains 2-resolving. Hence we may 
assume that S = {v1, v2, v3}. Since D(v2) = (1, 0, 1) =
D(v2, v4), the set S is not 2-resolving. It follows that 
β2(K4) = 4. By the same token, β2(Kn) = n for all 
complete graphs Kn , n ≥ 3. This example shows that 
a 2-resolving set must not be confused with so-called 
doubly resolving set which is discussed, for instance, 

in [4] — there it is shown that the smallest doubly re-
solving set in Kn equals n − 1.

In this paper, we consider �-resolving sets in two in-
finite families of graphs, namely, in the two dimensional 
grid graphs P p�Pq and the n-dimensional binary hyper-
cubes Fn . For the usual (1-)resolving set, it has been 
shown that the metric dimension of the two dimensional 
grid graph equals two [10]. Section 2 shows that we can 
determine the 2-set-metric dimension in the grid graph 
using a helpful geometric flavour of the problem. In Sec-
tion 3, we consider �-resolving sets in the binary hyper-
cubes Fn . For the usual (1-)resolving sets it is known that 
β1(F

n) ≤ n [5] and, asymptotically [14],

lim
n→∞β1(F

n) · log n

n
= 2.

2. On �-resolving sets in a grid graph

In this section, we find the 2-set-metric dimension of 
the grid graph P p�Pq and show that the only �-resolving 
set for 3 ≤ � ≤ pq is the whole set of vertices S = P p × Pq . 
Recall that the path in Example 2(ii) can be interpreted as 
Pn�P1 where P1 consists of a single vertex.

Theorem 3. Let p, q ≥ 2 be integers. Then we have β2(P p�
Pq) = min{p, q} + 2.

Proof. First we consider the lower bound β2(P p�Pq) ≥
min{p, q} + 2. Let S be any 2-resolving set in the graph 
P p�Pq . Denote P p = (v1, . . . , v p) and Pq = (w1, . . . , wq). 
The distance between two vertices (vi, w j) and (vi′ , w j′ )
of P p × Pq equals

|i − i′| + | j − j′|. (1)

First we show that all the corners (v1, w1), (v p, w1), 
(v1, wq) and (v p, wq) necessarily belong to the 2-resolving 
set S . Assume to the contrary that (v1, w1) /∈ S (pro-
ceed analogously with the other corners). Consider now 
two sets X = {(v2, w2)} and Y = {(v1, w1), (v2, w2)}. 
By (1), we see that any vertex in P p�Pq apart from 
(v1, w1) has shorter (or equal) distance to (v2, w2) than 
to (v1, w1). Therefore, for any element s ∈ S , we get 
d(s, Y ) = d(s, (v2, w2)) = d(s, X). Consequently, D(X) =
D(Y ), which is a contradiction, and we are done.

If p = 2 or q = 2, this already gives the claim β2(P p�
Pq) ≥ 4, so assume from now on that p, q ≥ 3. We de-
note the rows (which are not intersecting the corners) 
by Rk = {(vi, wk) | i = 1, . . . , p}, where k = 2, . . . , q − 1, 
and columns by Ih = {(vh, w j) | j = 1, . . .q}, where h =
2, . . . , p −1. Denote the cross (without the center (vh, wk)) 
by Ch,k = (Rk ∪ Ih) \ {(vh, wk)}. We need the following fact:

• Fact 1. There exists at least one element of S in any 
cross Ch,k where h = 2, . . . , p − 1 and k = 2, . . . , q − 1.
In order to prove this, let us consider the sets X =
{(vh, wk+1), (vh, wk−1)} and Y = {(vh−1, wk), (vh+1,

wk)}. There must be an element of S in the cross 
Ch,k if S is a 2-resolving set, since any vertex u out-
side the cross has d(u, X) = d(u, Y ). Indeed, suppose 
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