
Information Processing Letters 116 (2016) 701–705

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Program synthesis by model finding

Alexandre Mota ∗, Juliano Iyoda, Heitor Maranhão

Centro de Informática, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, s/n, Cidade Universitária, CEP 50.740-560, Recife,
PE, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 September 2015
Received in revised form 7 June 2016
Accepted 9 June 2016
Available online 15 June 2016
Communicated by J.L. Fiadeiro

Keywords:
Program derivation
Program synthesis
Alloy*
Model finding

Program synthesis aims to automate the task of programming. In this paper, we present a
clear and elegant formulation of program synthesis as an Alloy* specification by applying
its model finder to search for a program that satisfies a contract in terms of pre and
post-conditions. Our proposal embeds in Alloy* both the syntax and the denotational
semantics of Winskel’s IMP(erative) language. We illustrate our approach by synthesising
Euclid’s greatest common divisor algorithm. Our experiments show that our synthesis time
is competitive. In addition, Alloy* provides us a great platform for the development of a
synthesiser: an elegant synthesiser based on the denotational semantics of a language that
can be implemented very quickly.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Programming is a human activity that is sometimes
viewed as Art, sometimes as Math. Program synthesis
views programming as Math and aims to automatically
produce a program from a specification.

The full automation of the programming activity from
a specification is a grand challenge. The automatic trans-
lation of a specification to a program can be done in in-
finitely many ways. The search space is huge. At this point
the literature follows different routes:

• The development of synthesisers that are specialised
in a particular domain (database [1], reactive systems
[2], etc);

• The development of synthesisers that translate a par-
ticular language into a SAT/SMT language [3,4];

* Corresponding author.
E-mail addresses: acm@cin.ufpe.br (A. Mota), jmi@cin.ufpe.br (J. Iyoda),

hpm2@cin.ufpe.br (H. Maranhão).

• And the development of synthesisers that take as in-
put a general purpose high-level specification [5].

In this paper, we follow the approach of a general purpose
high-level specification [5]. We use Alloy* [5] and its con-
straint solver (the Alloy* Analyzer) to create a synthesiser
for Winskel’s language IMP [6]. Alloy* extends Alloy [7],
which is a first-order model finder, to handle quantifica-
tions over higher-order structures. The Alloy* higher-order
facility is built based on the Counter Example-Guided In-
ductive Synthesis (CEGIS) [8], which is an approach for
solving higher-order synthesis problems.

The main contributions of this paper are:

• The embedding of the syntax and the denotational se-
mantics of a subset1 of the IMP language in Alloy*;

• A single program synthesiser supporting both program
sketches (programs with holes) and a fully automatic
synthesis where no sketch is provided;

1 This subset is representative because it already considers synthesising
expressions and program constructors such as loops.

http://dx.doi.org/10.1016/j.ipl.2016.06.003
0020-0190/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2016.06.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:acm@cin.ufpe.br
mailto:jmi@cin.ufpe.br
mailto:hpm2@cin.ufpe.br
http://dx.doi.org/10.1016/j.ipl.2016.06.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.06.003&domain=pdf

702 A. Mota et al. / Information Processing Letters 116 (2016) 701–705

• Program synthesis involving the notions of state, con-
ditional commands, sequential compositions and loops
following a denotational semantics;

• A case study illustrating the synthesis of Euclid’s algo-
rithm for computing the greatest common divisor;

• Experiments illustrating the performance of the syn-
thesiser.

This paper is organised as follows. In Section 2 we show
our Alloy* specification of IMP (syntax, well-formedness
rules, and semantics) as well as the program synthesis
problem. Section 3 illustrates our proposal by synthesis-
ing the classical algorithm of Euclid to compute the great-
est common divisor. Section 4 discusses related works and
Section 5 concludes.

2. Alloy* specification for program synthesis

In what follows we present an embedding of the IMP
language, its well-formedness rules, and its semantics in
Alloy*.

2.1. The syntax of IMP in Alloy*

Winskel [6] defined Loc as a given set of variables (lo-
cations). In Alloy*, an abstract signature sig defines such
given set.

abstract sig Loc { }

A command Cmd is defined as an abstract syntactic
class.

abstract sig Cmd { }

All concrete commands are defined as subclasses of
Cmd. First we define skip, which is the command that does
nothing.

lone sig Skip extends Cmd { }

The extends keyword, referencing Cmd, is used to estab-
lish an inheritance relationship between Cmd and Skip. In
this case, extends models the grammatical dependency be-
tween the non-terminal Cmd and the terminal Skip. The
term lone constrains the signature to have at most one in-
stance.

An arithmetic expression AExp is either an integer con-
stant (IntVal), integer variable (IntVar), addition (Add), sub-
traction (Sub) or multiplication (Mult).

abstract sig AExp { }
sig IntVal extends AExp { val : one Int }
sig IntVar extends AExp { name: one Loc }
sig Add extends AExp { op1 : one AExp , op2 : one AExp } . . .

Each class of expression has fields. For instance, an IntVar

expression contains the field name that belongs to Loc, and
the fields op1 and op2 of an addition are its operands. Sub-
traction and multiplication are defined similarly to addi-
tion.

An assignment X := a is a command whose left-hand
side is an integer variable and the right-hand side is an
arithmetic expression.

sig Assign extends Cmd { lhs : one IntVar , rhs : one AExp }
{ (IntVar < : rhs) �= lhs and rhs �∈ IntVal and lhs . name

�∈ XLoc }

The right-hand side must be different from the variable
on the left-hand side, must not be a constant, and must
not be a read-only variable (XLoc extends Loc and denotes
read-only variables).

The sequential composition of commands C0; C1 be-
comes the entity SComp. The command C0 is named as curr

(for the current command) and C1 as next.

sig SComp extends Cmd { curr , next : one Cmd }

A boolean expression BExp is modelled as an expression
of the form lhs OP rhs, where lhs and rhs are arithmetic ex-
pressions that are different from auxiliary variables (ALoc)2.
An OP ∈ {EQ, NEQ, LEQ, GEQ, GTH}. The operators EQ, NEQ, LEQ,
GEQ and GTH denote =, �=, ≤, ≥ and >, respectively.

abstract sig BExp { lhs , rhs : one AExp }
{ lhs . name �∈ ALoc and rhs . name �∈ ALoc }

sig EQ extends BExp { } . . .

The operators NEQ, LEQ, GEQ and GTH are defined in a similar
way to EQ.

A conditional statement if b then C0 else C1 becomes the
entity CondS, where we had to change else to elsen because
the former is a reserved Alloy* keyword.

sig CondS extends Cmd { cond : one BExp , then ,
elsen : one Cmd }

{ then �= elsen }

We restrict then to be different from elsen to prevent the
synthesis of commands of the form if b then C else C .

Our last and most difficult statement is the while state-
ment. In addition to the usual boolean condition (cond) and
body (wbody), we introduce an auxiliary structure (unfold) to
unfold the body over the iterations, subject to an invariant.

sig While extends Cmd {
cond : one BExp , wbody: one (Cmd − While) ,
unfold : set Expansion , inv : one BExp }
{ (# unfold ≥ 2 ⇒ (∀ d i s j e1 , e2 : unfold •

e1 . exp . f i r s t . curr . bind �= e2 . exp . f i r s t . curr . bind))
and cond �= inv }

sig Expansion { exp : seq StChg }
{ #exp = #exp . elems and

(∀ i : exp . inds • i �= exp . l a s t I d x
⇒ exp [i] . next = exp [add [i , 1]] . curr) }

sig StChg { curr , next : one State }

The body wbody is any command except another while (we
do not handle nested whiles yet). An Expansion is a sequence
of pairs [(s0, s1), (s1, s2), ..., (sn−1, sn)], where si is a state.
The size of an expansion exp is the length of its sequence of
state changes exp.elems. Each pair (si, si+1) denotes a state
changing (StChg) from si to si+1 by running the body of the

2 An ALoc extends a Loc and denotes auxiliary variables that are forbid-
den to be used in conditions.

Download English Version:

https://daneshyari.com/en/article/427001

Download Persian Version:

https://daneshyari.com/article/427001

Daneshyari.com

https://daneshyari.com/en/article/427001
https://daneshyari.com/article/427001
https://daneshyari.com

