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Let G = (X, Y , E) be a bipartite graph with bipartition X and Y and edge set E such that 
X is partitioned into a set of k pairwise disjoint subsets X1, X2, . . . , Xk . For any sequence 
n1, n2, . . . , nk of natural numbers with ni ≤ |Xi | for all i, we prove a necessary and sufficient 
condition for the existence of a semi-perfect matching in G , a matching that includes, for 
each i, at least ni edges that are incident to vertices from Xi . Clearly, this is equivalent to 
Hall’s theorem in the case where ni = |Xi | for all i.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (X, Y , E) be a bipartite graph with bipartition 
X and Y and edge set E such that an edge (x, y) in E
means that vertex x ∈ X can be assigned to vertex y ∈ Y . 
Let n and m denote the cardinalities of the sets of vertices 
and edges in G , respectively. A matching in graph G is a set 
of pairwise non-adjacent edges, and a maximum matching 
in G is a matching that contains the maximal number of 
edges.

The problem of finding a maximum matching in G can 
be reduced to the maximum flow problem as follows. We 
first add a source s with edges to all vertices in X , and a 
sink t with edges from all vertices in Y . Next, we assign
a unit capacity to each edge of the resulting graph, and 
then compute a maximal flow from s to t . It is easy to 
verify that the set of all edges with nonzero flow from X
to Y forms a maximum matching in G . Therefore, algo-
rithms designed for the maximum flow problem can be 
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used to solve the maximum matching problem in bipartite 
graphs. Thus, Dinic’s algorithm [5] can be used to find a 
maximum matching in G in O (

√
nm) time. Different algo-

rithms of the same running time are proposed for finding 
maximum matching in general graphs [2,7,12]. By adapting 
Dinic’s algorithm to the maximum matching problem in bi-
partite graphs, Hopcroft and Karp [10] improved the time 
complexity to O (

√
κm), where κ denotes the cardinality 

of a maximum matching in G . Feder and Motwani [6] ap-
plied Dinic’s algorithm after compressing G , reducing the 
number of edges by about a factor of log n. They proved 
a running time of O (

√
nm∗), where m∗ is the cardinality 

of the set of edges in the compressed graph. Based on the 
fast matrix multiplication algorithm, Mucha and Sankowski 
[13] developed a randomized algorithm with time com-
plexity O (n2.38) for the maximum matching problem in 
bipartite graphs.

A maximum matching M in G is called perfect match-
ing if, for every x ∈ X , there exists an edge that incident 
to x in M . Hall [4] proposed the following famous theo-
rem that provides a necessary and sufficient condition for 
the existence of a perfect matching in bipartite graphs. For 
a subset A of X , define NG(A) to be the set of all ver-
tices y ∈ Y that are endpoints of edges with at least one 
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endpoint in A, and let |A| and |NG (A)| denote the cardi-
nalities of A and NG (A), respectively.

Theorem 1 (Hall’s theorem). There exists a perfect matching in 
the bipartite graph G = (X, Y , E) if and only if |NG(A)| ≥ |A|
for every subset A of X. �

Several applications and extensions of Hall’s theorem 
have been considered in the literatures. The rest of this 
section is devoted for summarizing some of these exten-
sions.

Let S = {S1, S2, S3, . . .} be a family of subsets of a given 
set A. A system of distinct representatives of S is an in-
dexed set {a1, a2, a3, . . .} of distinct elements of A such 
that ai ∈ Si for all i. Hall [8] showed that there exists 
a system of distinct representatives of S if the union of 
any k distinct subsets from S contains at least k distinct 
elements, for every finite k. He also showed that this con-
dition is sufficient if the number of subsets is finite (i.e., 
S is finite). Afterward, Hall [9] proved that the above con-
dition is sufficient if every subset Si in S is finite.

Let G = (X, Y , E) be a bipartite graph such that X =
∪1≤i≤k Ai and Y = ∪1≤i≤k Bi , where {A1, A2, . . . , Ak} and 
{B1, B2, . . . , Bk} are two families of finite sets. Pinelis [14]
proved a necessary and sufficient condition for the exis-
tence of a perfect matching M in G such that, for each 
i = 1, 2, . . . , k, all vertices of Ai are assigned in M to ver-
tices from Bi .

A (1, k)-complete matching from X to Y in bipartite 
graph G = (X, Y , E) is a subgraph of G in which each ver-
tex in X is adjacent to exactly k distinct vertices from 
Y and each vertex in Y is adjacent to at most one ver-
tex from X . Longani [11] proved a necessary and sufficient 
condition for the existence of (1, k)-complete matching in 
bipartite graphs for any natural number k.

Bokal et al. [3] proved a characterization of bipartite 
graph G = (X, Y , E) that admits a spanning subgraph in 
which the degrees of vertices in X and Y satisfy spec-
ified upper and lower bounds, respectively. Formally, for 
any two mappings f : X → N and g : Y → N, a set E ′ ⊆ E
of edges is an ( f , g)-quasi-matching of G if every element 
y of Y has at least g(y) incident edges from E ′ , and every 
element x of X has at most f (x) incident edges from E ′ , 
where N denotes the set of natural numbers. Bokal et al. 
[3] proved necessary and sufficient conditions for the exis-
tence of ( f , g)-quasi-matching in G .

Another generalization of Hall’s theorem was obtained 
by Aharoni and Haxell [1] for hypergraphs (a graph in 
which each edge may connect more than two vertices). 
A matching in the hypergraph is a set of pairwise disjoint 
edges. They proved a necessary and sufficient condition for 
the existence of a system of pairwise disjoint representa-
tives for a family of hypergraphs.

Now, consider the situation in which we have a set of 
projects each of them consists of a finite set of tasks, and a 
set of machines for carrying out these tasks. Each machine 
can process at most one task at a time, and a task can be 
processed by a machine if they satisfy some criteria (e.g., 
the processing cost is bounded by a given upper bound). 
The proposed plan may require a certain portion (number 
of tasks) of each project to be accomplished by the end 

of the first stage. It is easy to see that this problem can 
be formulated as a matching problem in a bipartite graph. 
Up to our knowledge, this model cannot be reduced to one 
of the known versions of matching problems. In this note, 
we prove a necessary and sufficient condition for the exis-
tence of a desired matching in this model. We also show 
that this matching (if one exists) can be computed in poly-
nomial time.

2. Hall’s theorem for partitioned bipartite graphs

Define a partitioned bipartite graph (G = (X, Y , E), X , N )

in which G = (X, Y , E) is a bipartite graph, X = {X1,

X2, . . . , Xk} is a partition of X , and N is a sequence 
of k natural numbers n1, n2, . . . , nk with ni ≤ |Xi | for 
all i. A matching M in a partitioned bipartite graph 
(G = (X, Y , E), X , N ) is called a semi-perfect matching if, 
for every i = 1, 2, . . . , k, at least ni edges in M are inci-
dent to vertices from the set Xi . In this section we prove 
a necessary and sufficient condition for the existences of a 
semi-perfect matching in partitioned bipartite graphs. We 
assume without loss of generality that each vertex x in X
is adjacent to at least one vertex in Y since otherwise we 
can simply delete x from X without affecting the existence 
of a semi-perfect matching in (G = (X, Y , E), X , N ).

For a subset A ⊆ X , let dA
(G,X ,N )

denote the maximum 
number of vertices in A that might not be included in 
any semi-perfect matching in (G = (X, Y , E), X , N ), i.e., 
dA

(G,X ,N )
= ∑

1≤i≤k min{|A ∩ Xi |, |Xi | − ni}.
The following theorem is an extension of Hall’s theorem 

in partitioned bipartite graphs. The main idea of the proof 
is similar to that of the original Hall’s theorem.

Theorem 2. There exists a semi-perfect matching in a parti-
tioned bipartite graph (G = (X, Y , E), X , N ) if and only if

|NG(A)| ≥ |A| − dA
(G,X ,N ) (1)

for every subset A of X.

Proof. If the partitioned bipartite graph (G = (X, Y , E),

X , N ) has a semi-perfect matching, then it is easy to ver-
ify that it satisfies Condition (1).

Now, assume that the partitioned bipartite graph
(G = (X, Y , E), X , N ) satisfies Condition (1) and we want 
to show that it has a semi-perfect matching. We prove the 
theorem by induction on the cardinality of the set X . If X
contains one vertex x (i.e., X = {x}), then the theorem is 
trivially true since x is adjacent to at least one vertex in Y
by the assumptions. Assume that the theorem is true for 
|X | ≤ n, and consider a bipartite graph G with |X | = n + 1. 
We consider the following two cases.

Case 1. In the first case, |NG (A)| ≥ |A| − dA
(G,X ,N )

+ 1
holds for every subset A ⊂ X . Then we choose any ver-
tex x ∈ X , say from a subset Xi in X , and any y ∈
NG({x}). Note that y is well defined since the set NG ({x})
is nonempty by the assumptions. Let G ′ = (X ′, Y ′, E ′) be 
the bipartite graph with bipartition X ′ = X − {x} and 
Y ′ = Y − {y}, and whose set of edges E ′ is the same as 
those in E after deleting all edges incident to x and y. 
Define a partition X ′ = {X ′

1, X
′
2, . . . , X

′
k} of X ′ such that 
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