Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

An extension of Hall's theorem for partitioned bipartite graphs $\stackrel{\ensuremath{\approx}}{\sim}$

Ehab Morsy

Department of Mathematics, Suez Canal University, Ismailia 41522, Egypt

ARTICLE INFO

Article history: Received 5 October 2015 Received in revised form 6 May 2016 Accepted 15 June 2016 Available online 17 June 2016 Communicated by J.L. Fiadeiro

Keywords: Hall's theorem Maximum matching Perfect matching Maximum flow Combinatorial problems

1. Introduction

Let G = (X, Y, E) be a bipartite graph with bipartition X and Y and edge set E such that an edge (x, y) in E means that vertex $x \in X$ can be assigned to vertex $y \in Y$. Let n and m denote the cardinalities of the sets of vertices and edges in G, respectively. A *matching* in graph G is a set of pairwise non-adjacent edges, and a *maximum* matching in G is a matching that contains the maximal number of edges.

The problem of finding a maximum matching in G can be reduced to the maximum flow problem as follows. We first add a source s with edges to all vertices in X, and a sink t with edges from all vertices in Y. Next, we assign a unit capacity to each edge of the resulting graph, and then compute a maximal flow from s to t. It is easy to verify that the set of all edges with nonzero flow from Xto Y forms a maximum matching in G. Therefore, algorithms designed for the maximum flow problem can be

 $\,\,^{\,\,\mathrm{t\!\!c}}$ This research was partially supported by Alexander von Humboldt Foundation.

E-mail address: ehabmorsy@science.suez.edu.eg.

http://dx.doi.org/10.1016/j.ipl.2016.06.005 0020-0190/© 2016 Elsevier B.V. All rights reserved.

ABSTRACT

Let G = (X, Y, E) be a bipartite graph with bipartition X and Y and edge set E such that X is partitioned into a set of k pairwise disjoint subsets $X_1, X_2, ..., X_k$. For any sequence $n_1, n_2, ..., n_k$ of natural numbers with $n_i \leq |X_i|$ for all *i*, we prove a necessary and sufficient condition for the existence of a semi-perfect matching in G, a matching that includes, for each *i*, at least n_i edges that are incident to vertices from X_i . Clearly, this is equivalent to Hall's theorem in the case where $n_i = |X_i|$ for all *i*.

© 2016 Elsevier B.V. All rights reserved.

used to solve the maximum matching problem in bipartite graphs. Thus, Dinic's algorithm [5] can be used to find a maximum matching in G in $O(\sqrt{nm})$ time. Different algorithms of the same running time are proposed for finding maximum matching in general graphs [2,7,12]. By adapting Dinic's algorithm to the maximum matching problem in bipartite graphs, Hopcroft and Karp [10] improved the time complexity to $O(\sqrt{\kappa m})$, where κ denotes the cardinality of a maximum matching in G. Feder and Motwani [6] applied Dinic's algorithm after compressing G, reducing the number of edges by about a factor of log n. They proved a running time of $O(\sqrt{nm^*})$, where m^* is the cardinality of the set of edges in the compressed graph. Based on the fast matrix multiplication algorithm, Mucha and Sankowski [13] developed a randomized algorithm with time complexity $O(n^{2.38})$ for the maximum matching problem in bipartite graphs.

A maximum matching M in G is called *perfect matching* if, for every $x \in X$, there exists an edge that incident to x in M. Hall [4] proposed the following famous theorem that provides a necessary and sufficient condition for the existence of a perfect matching in bipartite graphs. For a subset A of X, define $N_G(A)$ to be the set of all vertices $y \in Y$ that are endpoints of edges with at least one

endpoint in *A*, and let |A| and $|N_G(A)|$ denote the cardinalities of *A* and $N_G(A)$, respectively.

Theorem 1 (Hall's theorem). There exists a perfect matching in the bipartite graph G = (X, Y, E) if and only if $|N_G(A)| \ge |A|$ for every subset A of X. \Box

Several applications and extensions of Hall's theorem have been considered in the literatures. The rest of this section is devoted for summarizing some of these extensions.

Let $S = \{S_1, S_2, S_3, ...\}$ be a family of subsets of a given set A. A system of distinct representatives of S is an indexed set $\{a_1, a_2, a_3, ...\}$ of distinct elements of A such that $a_i \in S_i$ for all i. Hall [8] showed that there exists a system of distinct representatives of S if the union of any k distinct subsets from S contains at least k distinct elements, for every finite k. He also showed that this condition is sufficient if the number of subsets is finite (i.e., S is finite). Afterward, Hall [9] proved that the above condition is sufficient if every subset S_i in S is finite.

Let G = (X, Y, E) be a bipartite graph such that $X = \bigcup_{1 \le i \le k} A_i$ and $Y = \bigcup_{1 \le i \le k} B_i$, where $\{A_1, A_2, \ldots, A_k\}$ and $\{B_1, B_2, \ldots, B_k\}$ are two families of finite sets. Pinelis [14] proved a necessary and sufficient condition for the existence of a perfect matching M in G such that, for each $i = 1, 2, \ldots, k$, all vertices of A_i are assigned in M to vertices from B_i .

A (1, k)-complete matching from X to Y in bipartite graph G = (X, Y, E) is a subgraph of G in which each vertex in X is adjacent to exactly k distinct vertices from Y and each vertex in Y is adjacent to at most one vertex from X. Longani [11] proved a necessary and sufficient condition for the existence of (1, k)-complete matching in bipartite graphs for any natural number k.

Bokal et al. [3] proved a characterization of bipartite graph G = (X, Y, E) that admits a spanning subgraph in which the degrees of vertices in X and Y satisfy specified upper and lower bounds, respectively. Formally, for any two mappings $f : X \to \mathbb{N}$ and $g : Y \to \mathbb{N}$, a set $E' \subseteq E$ of edges is an (f, g)-quasi-matching of G if every element y of Y has at least g(y) incident edges from E', and every element x of X has at most f(x) incident edges for E', where \mathbb{N} denotes the set of natural numbers. Bokal et al. [3] proved necessary and sufficient conditions for the existence of (f, g)-quasi-matching in G.

Another generalization of Hall's theorem was obtained by Aharoni and Haxell [1] for hypergraphs (a graph in which each edge may connect more than two vertices). A matching in the hypergraph is a set of pairwise disjoint edges. They proved a necessary and sufficient condition for the existence of a system of pairwise disjoint representatives for a family of hypergraphs.

Now, consider the situation in which we have a set of projects each of them consists of a finite set of tasks, and a set of machines for carrying out these tasks. Each machine can process at most one task at a time, and a task can be processed by a machine if they satisfy some criteria (e.g., the processing cost is bounded by a given upper bound). The proposed plan may require a certain portion (number of tasks) of each project to be accomplished by the end of the first stage. It is easy to see that this problem can be formulated as a matching problem in a bipartite graph. Up to our knowledge, this model cannot be reduced to one of the known versions of matching problems. In this note, we prove a necessary and sufficient condition for the existence of a desired matching in this model. We also show that this matching (if one exists) can be computed in polynomial time.

2. Hall's theorem for partitioned bipartite graphs

Define a partitioned bipartite graph ($G = (X, Y, E), \mathcal{X}, \mathcal{N}$) in which G = (X, Y, E) is a bipartite graph, $\mathcal{X} = \{X_1, X_2, \ldots, X_k\}$ is a partition of X, and \mathcal{N} is a sequence of k natural numbers n_1, n_2, \ldots, n_k with $n_i \leq |X_i|$ for all i. A matching M in a partitioned bipartite graph ($G = (X, Y, E), \mathcal{X}, \mathcal{N}$) is called a *semi-perfect matching* if, for every $i = 1, 2, \ldots, k$, at least n_i edges in M are incident to vertices from the set X_i . In this section we prove a necessary and sufficient condition for the existences of a semi-perfect matching in partitioned bipartite graphs. We assume without loss of generality that each vertex x in Xis adjacent to at least one vertex in Y since otherwise we can simply delete x from X without affecting the existence of a semi-perfect matching in ($G = (X, Y, E), \mathcal{X}, \mathcal{N}$).

For a subset $A \subseteq X$, let $d^A_{(G,\mathcal{X},\mathcal{N})}$ denote the maximum number of vertices in A that might not be included in any semi-perfect matching in $(G = (X, Y, E), \mathcal{X}, \mathcal{N})$, i.e., $d^A_{(G,\mathcal{X},\mathcal{N})} = \sum_{1 \le i \le k} \min\{|A \cap X_i|, |X_i| - n_i\}.$

The following theorem is an extension of Hall's theorem in partitioned bipartite graphs. The main idea of the proof is similar to that of the original Hall's theorem.

Theorem 2. There exists a semi-perfect matching in a partitioned bipartite graph ($G = (X, Y, E), \mathcal{X}, \mathcal{N}$) if and only if

$$|N_G(A)| \ge |A| - d^A_{(G,\mathcal{X},\mathcal{N})} \tag{1}$$

for every subset A of X.

Proof. If the partitioned bipartite graph (G = (X, Y, E), \mathcal{X}, \mathcal{N}) has a semi-perfect matching, then it is easy to verify that it satisfies Condition (1).

Now, assume that the partitioned bipartite graph $(G = (X, Y, E), \mathcal{X}, \mathcal{N})$ satisfies Condition (1) and we want to show that it has a semi-perfect matching. We prove the theorem by induction on the cardinality of the set *X*. If *X* contains one vertex *x* (i.e., $X = \{x\}$), then the theorem is trivially true since *x* is adjacent to at least one vertex in *Y* by the assumptions. Assume that the theorem is true for $|X| \le n$, and consider a bipartite graph *G* with |X| = n + 1. We consider the following two cases.

Case 1. In the first case, $|N_G(A)| \ge |A| - d^A_{(G,\mathcal{X},\mathcal{N})} + 1$ holds for every subset $A \subset X$. Then we choose any vertex $x \in X$, say from a subset X_i in \mathcal{X} , and any $y \in$ $N_G(\{x\})$. Note that y is well defined since the set $N_G(\{x\})$ is nonempty by the assumptions. Let G' = (X', Y', E') be the bipartite graph with bipartition $X' = X - \{x\}$ and $Y' = Y - \{y\}$, and whose set of edges E' is the same as those in E after deleting all edges incident to x and y. Define a partition $\mathcal{X}' = \{X'_1, X'_2, \dots, X'_k\}$ of X' such that Download English Version:

https://daneshyari.com/en/article/427002

Download Persian Version:

https://daneshyari.com/article/427002

Daneshyari.com