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Consider n mobile sensors placed independently at random with the uniform distribution 
on a barrier represented as the unit line segment [0, 1]. The sensors have identical sensing 
radius, say r. When a sensor is displaced on the line a distance equal to d it consumes 
energy (in movement) which is proportional to some (fixed) power a > 0 of the distance d
traveled. The energy consumption of a system of n sensors thus displaced is defined as the 
sum of the energy consumptions for the displacement of the individual sensors.
We focus on the problem of energy efficient displacement of the sensors so that in 
their final placement the sensor system ensures coverage of the barrier and the energy 
consumed for the displacement of the sensors to these final positions is minimized in 
expectation. In particular, we analyze the problem of displacing the sensors from their 
initial positions so as to attain coverage of the unit interval and derive trade-offs for this 
displacement as a function of the sensor range. We obtain several tight bounds in this 
setting thus generalizing several of the results of [10] to any power a > 0.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important problems in sensor net-
works is minimizing battery consumption when accom-
plishing various tasks such as monitoring an environment, 
tracking events along a barrier and communicating. In this 
study, the environment being considered consists of a line 
segment barrier (which for simplicity is set to the unit 
interval [0, 1]), while the accompanying monitoring prob-
lem investigated is ensuring coverage of the barrier in the 
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sense that every point in the line segment is within the 
range of a sensor.

We consider the case where the sensors are equipped 
with omnidirectional sensing antennas of identical range 
r > 0; thus a sensor placed at location x in the unit in-
terval can sense any point at distance at most r either 
to the left or right of x. The initial placement of the sen-
sors does not guarantee barrier coverage since the sensors 
have been placed initially independently at random with 
the uniform distribution on a barrier. To attain coverage 
of the line segment it is required to displace the sensors 
from their original locations to new positions on the line 
while at the same time taking into account their sensing 
range r. Further, for some fixed constant a > 0 if a sensor 
is displaced a distance d the energy consumed by this sen-
sor is considered to be proportional to da . More generally, 
for a set of n sensors, if the ith sensor is displaced a dis-
tance di , for i = 1, 2, . . . , n, then the energy consumed by 
the whole system of n sensors is 

∑n
i=1 da

i . In this paper we 
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study the minimum total (or sum) energy consumption (in 
expectation) in the movement of the sensors so as to attain 
coverage of the unit segment when the energy consumed 
per sensor is proportional to some (fixed) power of the dis-
tance traveled. The present study generalizes some known 
results (see [10]) on the sensor displacement for a = 1 to 
arbitrary a > 0. Motivation for the extended model being 
proposed is that the energy consumption induced by indi-
vidual sensor displacement may not be linear in this dis-
placement, but rather be dependent on some power of the 
distance traversed. Further, the parameter a in the expo-
nent may well represent various conditions of the surface 
of the barrier, e.g., friction, lubrication, etc., which may af-
fect the overall energy consumption of the sensor system.

1.1. Related work

There is extensive literature about area and barrier (also 
known as perimeter) coverage by a set of sensors (e.g., 
see [1,3,15,12,14,5]). The coverage problem for planar do-
mains with pre-existing anchor (or destination) points was 
introduced in [4]. The deterministic version of the sen-
sor displacement problem on a linear domain (or interval) 
was introduced in [6]. Several optimization variants of the 
displacement problem were considered. The complexity of 
finding an algorithm that optimizes the displacement de-
pends 1) on the types of the sensors, 2) the type of the 
domain, and 3) whether one is minimizing the sum or 
maximum of the sensor movements. For the unit inter-
val the problem of minimizing the sum is NP-complete if 
the sensors may have different ranges but is in polyno-
mial time when all the sensor ranges are identical [7]. The 
problem of minimizing the maximum is NP-complete if the 
region consists of two intervals [6] but is polynomial time 
for a single interval even when the sensors may have dif-
ferent ranges [5]. Related work on deterministic algorithms 
for minimizing the total and maximum movement of sen-
sors for barrier coverage of a planar region may be found 
in [4].

More importantly, our work is closely related to the 
work of [10] where the authors consider the expected min-
imum total displacement for establishing full coverage of 
a unit interval for n sensors placed uniformly at random. 
Our analysis and problem statement generalizes some of 
the work of [10] from a = 1 to all exponents a > 0. A com-
prehensive study of sensor displacement to arbitrary prob-
ability distributions using techniques from queueing theory 
can be found in the forthcoming [11].

1.2. Outline and results of the paper

Our work generalizes some of the work of [10] to the 
more general setting when the cost of movement is pro-
portional to a fixed power of the distance displacement.

The overall organization of the paper is as follows. In 
Section 2 we provide several basic combinatorial facts that 
will be used in the sequel. In Section 3 we prove combi-
natorially how to obtain tight bounds when the range of 
the sensors is r = 1

2n . We show that the expected sum of 
displacement to the power a is

( a
2

)!
2
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when a is an even positive number, and in

�
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when a is an odd natural number. In Section 4 we prove 
the occurrence of threshold whereby the expected mini-
mum sum of displacements to the power a (a is posi-

tive natural number) remains in � 
(

1

n
a
2 −1

)
provided that 

r = 1
2n + f (n)

2 , where f (n) > 0 and f (n) = o(n−3/2). In Sec-
tion 5 we study the more general version of the sensors 
movement to the power a, where a > 0 and r > 1

2n . If 
r ≥ 6

2n we first present the Algorithm 1 that uses expected

O
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) a
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total movement to power a, where a > 0. Finally, Section 6
provides the conclusions.

2. Basic facts

In this section we recall some known facts about spe-
cial functions and special numbers which will be useful in 
the analysis in the next sections. The Euler Beta function 
(see [13])

B(c,d) =
1∫

0

xc−1(1 − x)d−1dx (1)

is defined for all complex numbers c, d such as �(c) > 0
and �(d) > 0. Moreover, for positive integer numbers c, d
we have

B(c,d)−1 =
(

c + d − 1

c

)
c (2)

Let us define a function gc:d(x) = xc−1(1 − x)d−1 on the 
interval [0, 1]. We say that a random variable Xc,d con-
centrated on the interval [0, 1] has the B(c, d) distribution 
with parameters c, d if it has the probability density func-
tion f (x) = (B(c, d))−1xc−1(1 − x)d−1. Hence,

Pr[Xc,d < t] = 1

B(c,d)

t∫
0

gc:d(x)dx (3)

We will use the following notations for the rising and 
falling factorial respectively [9]

nk =
{

1 for k = 0

n(n + 1) . . . (n + k − 1) for k ≥ 1,

nk =
{

1 for k = 0

n(n − 1) . . . (n − (k − 1)) for k ≥ 1.

Let 
[n

k

]
, 
{n

k

}
be the Stirling numbers of the first and sec-

ond kind respectively, which are defined for all integer 
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