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Zhang neural networks (ZNN) model is developed for solving a set of time-varying 
linear matrix inequalities, referred to as Stein matrix inequality, which exploits the time-
derivative information of time-varying coefficients. Computer simulation results show 
that the proposed ZNN model is efficient and superior for such kind of linear matrix 
inequalities (LMIs).
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1. Introduction

In recent decades, online matrix inequalities problems 
are widely encountered in numerous science and engi-
neering applications [1]. For example, the following linear 
matrix inequality (LMI),

A X B + X � C, (1)

where A ∈ R
m×m , B ∈ R

n×n and C ∈ R
m×n are given con-

stant matrices, and X ∈ R
m×n unknown, is usually as an 

essential part in many applications such as control system 
design, optimization and signal processing [2]. In view of 
these, it is considered to solve such kind of LMIs, referred 
to as Stein matrix inequality for the equivalence in (1) is 
a Stein matrix equation. Obviously, if A, B are nonsingu-
lar and B−1 = AT, post-multiplying by B−1 can yield the 
Lyapunov matrix inequality.
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There are two general types of well-developed solutions 
to the matrix inequality problems [1]. One is to transform 
the matrix inequalities into optimization problems and 
solved by classical methods. The other is based on iterative 
methods. However, when the system is of large-scale, both 
of them may not be effective and lead to slow convergence 
[3–5]. With the development of artificial neural networks 
theory, more and more authors have begun to develop 
neural networks models to solve such problems [1,3,4,6–9]. 
And as a powerful approach, the neural-dynamic model 
based on recurrent neural network is proposed. The clas-
sical two models are the gradient/gradient-based neural 
networks (GNN) [8] and Zhang neural networks (ZNN) [1,3,
4,10]. GNN is designed for solving the static/time-invariant 
systems, while ZNN is for time-varying cases (that is A, B
and C vary with t � 0).

In this paper, a ZNN model is investigated for online 
solution of Stein matrix inequality (1) with time varying, 
i.e.,

A(t)X(t)B(t) + X(t) � C(t). (2)

By introducing a time-varying matrix with each element 
greater than or equal to zero, the time-varying Stein matrix 
inequality (2) is converted to a time-varying Stein matrix 
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equation. Then, the ZNN model is developed for solving 
the converted time-varying matrix equation, thus the origi-
nal time-varying matrix inequality. Theoretical analysis and 
numerical results are presented to demonstrate the excel-
lent performance of the proposed ZNN approach for the 
time-varying Stein matrix inequality (2).

The rest of this paper is organized as follows. In Sec-
tion 2, preliminaries for time-varying Stein LMI and results 
related are introduced. Section 3 presents the ZNN model 
for solving the converted time-varying linear matrix equa-
tion and the original time-varying linear matrix inequality. 
In Section 4, computer simulation results are illustrated. 
Section 5 is the concluding remarks.

2. Preliminary

In this section, the problem formulation of time-varying 
Stein matrix inequality is presented first. Then, the conver-
sion from Stein matrix inequality to Stein matrix equation 
is proposed by introducing a time-varying matrix.

2.1. Problem

The following problem of time-varying Stein matrix in-
equality is considered,

A(t)X(t)B(t) + X(t) � C(t), (3)

where A(t) ∈ R
m×m , B(t) ∈ R

n×n and C(t) ∈ R
m×n are 

smoothly time-varying given matrices whose time-deriv-
atives are known numerically or could be estimated ac-
curately, and X(t) ∈ R

m×n is the time-varying unknown 
matrix to be solved. The objective is to find X(t) such that 
the time-varying Stein LMI (3) holds for any time t � 0.

2.2. Converted Stein matrix equation

To transform a time-varying Stein matrix inequality to a 
time-varying Stein matrix equation, the time-varying Stein 
LMI (3) is reformulated as follows:

F (X(t), t) = A(t)X(t)B(t) + X(t) − C(t)� 0, (4)

where each element of F (x(t), t) is less than or equal 
to zero. Thus, introducing a time-varying matrix �.2(t) ∈
R

m×n whose element is greater than or equal to zero leads 
to the following time-varying Stein matrix equation,

A(t)X(t)B(t) + X(t) − C(t) + �.2(t) = 0, (5)

where superscript .2 denotes the square of the element of 
a matrix and �(t) ∈ R

m×n is also an unknown matrix to 
be obtained.

To solve (5), the following related definitions and lem-
mas are needed.

Definition 2.1 ([11]). Given matrices Ã = (ãi j) ∈ R
m×n and 

B̃ = (b̃i j) ∈ R
p×q , the Kronecker product (or direct product 

or tensor product) of Ã and B̃ , denoted by Ã ⊗ B̃ , is defined 
as the following block matrix,

Ã ⊗ B̃ =
⎛
⎜⎝

ã11 B̃ · · · ã1n B̃
...

. . .
...

ãm1 B̃ · · · ãmn B̃

⎞
⎟⎠ ∈ R

mp×nq.

Note that, in general, Ã ⊗ B̃ �= B̃ ⊗ Ã, and Ã ⊗ ÃT �= ÃT ⊗ Ã
except Ã = ÃT.

Definition 2.2 ([11]). Given a matrix C̃ = (c̃i j) ∈ R
m×n , 

vec(C̃) is defined to be the mn-vector formed by stack-
ing the columns of C̃ as follows,

vec(C̃) = (c̃11, c̃21, · · · , c̃m1, c̃12, c̃22, · · · , c̃m2,

· · · , c̃1n, c̃2n, · · · , c̃mn)T ∈R
mn.

Lemma 2.1 ([2]). The time-varying Stein matrix equation (5)
is uniquely solvable, if λi(A(t)) · λ j(B(t)) �= −1 for ∀i =
1, 2, 3, · · · , m and ∀ j = 1, 2, 3, · · · , n at any time instant 
t ∈ [0, +∞), where λi(P (t)) denotes the ith eigenvalue of the 
time-varying matrix P (t).

Lemma 2.2 ([2]). If Lemma 2.1 is satisfied, then M(t) :=
BT(t) ⊗ A(t) + I is a nonsingular time-varying matrix, where I 
denotes an appropriately-dimensioned identity matrix.

Then, by solving the time-varying Stein matrix equa-
tion (5), a time-varying solution X(t) and a time-varying 
matrix �(t) can be obtained. With the previous analysis, 
the following inequality is obtained,

A(t)X(t)B(t) + X(t) − C(t) = −�.2(t)� 0,

which indicates that the solution X(t) of (5) is also the 
time-varying solution of the time-varying Stein LMI (3), 
that is to say, LMI (3) can be solved via the online solu-
tion of (5).

3. ZNN model for time-varying Stein LMI

In this section, the Zhang neural networks (ZNN) model 
is presented to solve time-varying matrix equation (5) thus 
time-varying Stein LMI (3).

First, the following matrix-valued indefinite error-
function is constructed,

E(t) = A(t)X(t)B(t) + X(t) − C(t) + �.2(t). (6)

Then, the ZNN model can be established as follows [4],

Ė(t) = dE(t)

dt
= −��(E(t)), (7)

where the matrix-valued design parameter � could be 
simply γ I with constant scalar γ > 0, which is used 
to scale the convergence rate of the solution, and �(·) :
R

m×n −→ R
m×n denotes a matrix-valued activation func-

tion array of neural networks. In general, the function φ(·), 
element of �(·), can be any monotonically increasing odd 
activation function, such as

• the linear activation function,

φ(e) = e;
• the hyperbolic-sine (h-s) activation function (with 

ξ = 2),

φ(e) = sinh(e) = exp(ξe) − exp(−ξe)

2
;
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