Zhang neural networks for a set of linear matrix inequalities with time-varying coefficient matrix

Jia Sun ${ }^{\text {a }}$, Shiheng Wang ${ }^{\text {b }}$, Ke Wang ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444, PR China
${ }^{\mathrm{b}}$ Nanyang Vocational College of Agriculture, Nanyang 473000, PR China

ARTICLE INFO

Article history:

Received 30 October 2015
Received in revised form 28 April 2016
Accepted 28 April 2016
Available online 6 May 2016
Communicated by X . Wu

Keywords:

Design of algorithms
Zhang neural networks (ZNN)
Linear matrix inequality (LMI)
Time-varying

Abstract

Zhang neural networks (ZNN) model is developed for solving a set of time-varying linear matrix inequalities, referred to as Stein matrix inequality, which exploits the timederivative information of time-varying coefficients. Computer simulation results show that the proposed ZNN model is efficient and superior for such kind of linear matrix inequalities (LMIs).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades, online matrix inequalities problems are widely encountered in numerous science and engineering applications [1]. For example, the following linear matrix inequality (LMI),
$A X B+X \leqslant C$,
where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{m \times n}$ are given constant matrices, and $X \in \mathbb{R}^{m \times n}$ unknown, is usually as an essential part in many applications such as control system design, optimization and signal processing [2]. In view of these, it is considered to solve such kind of LMIs, referred to as Stein matrix inequality for the equivalence in (1) is a Stein matrix equation. Obviously, if A, B are nonsingular and $B^{-1}=A^{\mathrm{T}}$, post-multiplying by B^{-1} can yield the Lyapunov matrix inequality.

[^0]There are two general types of well-developed solutions to the matrix inequality problems [1]. One is to transform the matrix inequalities into optimization problems and solved by classical methods. The other is based on iterative methods. However, when the system is of large-scale, both of them may not be effective and lead to slow convergence [3-5]. With the development of artificial neural networks theory, more and more authors have begun to develop neural networks models to solve such problems [1,3,4,6-9]. And as a powerful approach, the neural-dynamic model based on recurrent neural network is proposed. The classical two models are the gradient/gradient-based neural networks (GNN) [8] and Zhang neural networks (ZNN) [1,3, 4,10]. GNN is designed for solving the static/time-invariant systems, while ZNN is for time-varying cases (that is A, B and C vary with $t \geqslant 0$).

In this paper, a ZNN model is investigated for online solution of Stein matrix inequality (1) with time varying, i.e.,
$A(t) X(t) B(t)+X(t) \leqslant C(t)$.
By introducing a time-varying matrix with each element greater than or equal to zero, the time-varying Stein matrix inequality (2) is converted to a time-varying Stein matrix
equation. Then, the ZNN model is developed for solving the converted time-varying matrix equation, thus the original time-varying matrix inequality. Theoretical analysis and numerical results are presented to demonstrate the excellent performance of the proposed ZNN approach for the time-varying Stein matrix inequality (2).

The rest of this paper is organized as follows. In Section 2, preliminaries for time-varying Stein LMI and results related are introduced. Section 3 presents the ZNN model for solving the converted time-varying linear matrix equation and the original time-varying linear matrix inequality. In Section 4, computer simulation results are illustrated. Section 5 is the concluding remarks.

2. Preliminary

In this section, the problem formulation of time-varying Stein matrix inequality is presented first. Then, the conversion from Stein matrix inequality to Stein matrix equation is proposed by introducing a time-varying matrix.

2.1. Problem

The following problem of time-varying Stein matrix inequality is considered,
$A(t) X(t) B(t)+X(t) \leqslant C(t)$,
where $A(t) \in \mathbb{R}^{m \times m}, B(t) \in \mathbb{R}^{n \times n}$ and $C(t) \in \mathbb{R}^{m \times n}$ are smoothly time-varying given matrices whose time-derivatives are known numerically or could be estimated accurately, and $X(t) \in \mathbb{R}^{m \times n}$ is the time-varying unknown matrix to be solved. The objective is to find $X(t)$ such that the time-varying Stein LMI (3) holds for any time $t \geqslant 0$.

2.2. Converted Stein matrix equation

To transform a time-varying Stein matrix inequality to a time-varying Stein matrix equation, the time-varying Stein LMI (3) is reformulated as follows:
$F(X(t), t)=A(t) X(t) B(t)+X(t)-C(t) \leqslant \mathbf{0}$,
where each element of $F(x(t), t)$ is less than or equal to zero. Thus, introducing a time-varying matrix $\Lambda^{2}(t) \in$ $\mathbb{R}^{m \times n}$ whose element is greater than or equal to zero leads to the following time-varying Stein matrix equation,
$A(t) X(t) B(t)+X(t)-C(t)+\Lambda^{2}(t)=\mathbf{0}$,
where superscript ${ }^{2}$ denotes the square of the element of a matrix and $\Lambda(t) \in \mathbb{R}^{m \times n}$ is also an unknown matrix to be obtained.

To solve (5), the following related definitions and lemmas are needed.

Definition 2.1 ([11]). Given matrices $\tilde{A}=\left(\tilde{a}_{i j}\right) \in \mathbb{R}^{m \times n}$ and $\tilde{B}=\left(\tilde{b}_{i j}\right) \in \mathbb{R}^{p \times q}$, the Kronecker product (or direct product or tensor product) of \tilde{A} and \tilde{B}, denoted by $\tilde{A} \otimes \tilde{B}$, is defined as the following block matrix,
$\tilde{A} \otimes \tilde{B}=\left(\begin{array}{ccc}\tilde{a}_{11} \tilde{B} & \cdots & \tilde{a}_{1 n} \tilde{B} \\ \vdots & \ddots & \vdots \\ \tilde{a}_{m 1} \tilde{B} & \cdots & \tilde{a}_{m n} \tilde{B}\end{array}\right) \in \mathbb{R}^{m p \times n q}$.

Note that, in general, $\tilde{A} \otimes \tilde{B} \neq \tilde{B} \otimes \tilde{A}$, and $\tilde{A} \otimes \tilde{A}^{\mathrm{T}} \neq \tilde{A}^{\mathrm{T}} \otimes \tilde{A}$ except $\tilde{A}=\tilde{A}^{\mathrm{T}}$.

Definition 2.2 ([11]). Given a matrix $\tilde{C}=\left(\tilde{c}_{i j}\right) \in \mathbb{R}^{m \times n}$, $\operatorname{vec}(\tilde{C})$ is defined to be the mn-vector formed by stacking the columns of \tilde{C} as follows,

$$
\begin{aligned}
\operatorname{vec}(\tilde{C})= & \left(\tilde{c}_{11}, \tilde{c}_{21}, \cdots, \tilde{c}_{m 1}, \tilde{c}_{12}, \tilde{c}_{22}, \cdots, \tilde{c}_{m 2}\right. \\
& \left.\cdots, \tilde{c}_{1 n}, \tilde{c}_{2 n}, \cdots, \tilde{c}_{m n}\right)^{\mathrm{T}} \in \mathbb{R}^{m n}
\end{aligned}
$$

Lemma 2.1 ([2]). The time-varying Stein matrix equation (5) is uniquely solvable, if $\lambda_{i}(A(t)) \cdot \lambda_{j}(B(t)) \neq-1$ for $\forall i=$ $1,2,3, \cdots, m$ and $\forall j=1,2,3, \cdots, n$ at any time instant $t \in[0,+\infty)$, where $\lambda_{i}(P(t))$ denotes the ith eigenvalue of the time-varying matrix $P(t)$.

Lemma 2.2 ([2]). If Lemma 2.1 is satisfied, then $M(t):=$ $B^{\mathrm{T}}(t) \otimes A(t)+I$ is a nonsingular time-varying matrix, where I denotes an appropriately-dimensioned identity matrix.

Then, by solving the time-varying Stein matrix equation (5), a time-varying solution $X(t)$ and a time-varying matrix $\Lambda(t)$ can be obtained. With the previous analysis, the following inequality is obtained,

$$
A(t) X(t) B(t)+X(t)-C(t)=-\Lambda^{2}(t) \leqslant \mathbf{0}
$$

which indicates that the solution $X(t)$ of (5) is also the time-varying solution of the time-varying Stein LMI (3), that is to say, LMI (3) can be solved via the online solution of (5).

3. ZNN model for time-varying Stein LMI

In this section, the Zhang neural networks (ZNN) model is presented to solve time-varying matrix equation (5) thus time-varying Stein LMI (3).

First, the following matrix-valued indefinite errorfunction is constructed,
$E(t)=A(t) X(t) B(t)+X(t)-C(t)+\Lambda^{2}(t)$.
Then, the ZNN model can be established as follows [4],
$\dot{E}(t)=\frac{d E(t)}{d t}=-\Gamma \Phi(E(t))$,
where the matrix-valued design parameter Γ could be simply γI with constant scalar $\gamma>0$, which is used to scale the convergence rate of the solution, and $\Phi(\cdot)$: $\mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{m \times n}$ denotes a matrix-valued activation function array of neural networks. In general, the function $\phi(\cdot)$, element of $\Phi(\cdot)$, can be any monotonically increasing odd activation function, such as

- the linear activation function,

$$
\phi(e)=e ;
$$

- the hyperbolic-sine (h-s) activation function (with $\xi=2$),

$$
\phi(e)=\sinh (e)=\frac{\exp (\xi e)-\exp (-\xi e)}{2}
$$

https://daneshyari.com/en/article/427023

Download Persian Version:

https://daneshyari.com/article/427023

Daneshyari.com

[^0]: 4. Supported by National Natural Science Foundation of China (11301330) and the grants "The First-class Discipline of Universities in Shanghai" and "Gaoyuan Discipline of Shanghai".

 * Corresponding author.

 E-mail address: kwang@shu.edu.cn (K. Wang).

