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The unique shortest vector problem on a rational lattice is the problem of finding the 
shortest non-zero vector under the promise that it is unique (up to multiplication by 
−1). We give several incremental improvements on the known hardness of the unique 
shortest vector problem (uSVP) using standard techniques. This includes a deterministic 
reduction from the shortest vector problem to the uSVP, the NP-hardness of uSVP on (

1 + 1
poly(n)

)
-unique lattices, and a proof that the decision version of uSVP defined by Cai 

[4] is in co-NP for n1/4-unique lattices.
© 2016 Published by Elsevier B.V.

1. Introduction

Despite its simple grid like structure, lattices have wide 
and varied applications in many areas of mathematics 
and after the discovery of the LLL algorithm [13] also in 
computer science. The scope of the application was fur-
thered by the breakthrough result of Ajtai [2], who showed 
that lattice problems have a very desirable property for 
cryptography: a worst-case to average-case reduction. This 
property yields one-way functions and collision resistant 
hash functions, based on the worst-case hardness of lat-
tice problems. This is in a stark contrast to the traditional 
number theoretic constructions which are based on the 
average-case hardness e.g., factoring, discrete logarithms.

A lattice L is the set of all integer combinations of n
linearly independent vectors b1, b2, . . . , bn in Rm . These 
vectors are referred to as a basis of the lattice and n is 
called the rank of the lattice. The successive minima λi(L)
(where i = 1, . . . , n) of the lattice L are among the most 
fundamental parameters associated to a lattice. The λi(L)
is defined as the smallest value such that a sphere of ra-
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dius λi(L) centered around the origin contains at least i
linearly independent lattice vectors.

The shortest vector problem (SVP) is arguably the most 
important problem on rational lattices. Given a lattice L, 
the problem asks for a shortest non-zero vector in the lat-
tice. A generalization of the decision version of the SVP 
leads to the GapSVP problem. The GapSVPγ can be seen 
as a promise problem, which given a lattice L and an inte-
ger d, asks to distinguish between the case λ1(L) ≤ d and 
λ1(L) > γ d.

A lattice L is called γ -unique if λ2(L) > γλ1(L). In 
this work, we will be concerned with the unique short-
est vector problem (uSVP for short). For a parameter γ , 
the uSVPγ is defined as follows. Given a γ -unique lat-
tice L; find the shortest non-zero vector in L. Notice that 
for uSVP, γ can be interpreted both as a uniqueness fac-
tor, and approximation factor. The two resulting problems 
are equivalent. This justifies the uSVPγ notation. The se-
curity of the first lattice based public-key cryptosystem by 
Ajtai–Dwork [1] was based on the worst-case hardness of 
uSVPO (n8) . A series of subsequent papers(in particular, [7,
16]) improved the uniqueness factor, i.e., obtained public-
key cryptosystems based on the worst-case hardness of 
uSVPO (n1.5) .
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There are still some gaps in our understanding of the 
hardness of uSVP. The uSVP problem was proved equiva-
lent to the GapSVP problem upto an approximation factor 
of 

√
n [14]. Unfortunately, the reduction from GapSVP to 

uSVP in [14] does not imply NP-hardness of uSVP, be-
cause of the loss factor of 

√
n and the fact that GapSVPγ is 

known to be NP-hard only for sub-polynomial factors [9]. 
Kumar–Sivakumar [12], via a randomized reduction from 
SVP, show that uSVPγ is NP-hard for γ = 1 + 2−O (n2) . 
One of our main results is a derandomization of the re-
sult of [12] thereby giving a deterministic reduction from 
SVP to uSVP. We also give a randomized reduction which 
shows that uSVP is NP-hard for γ = 1 + 1/ poly(n) under 
randomized reductions. This result was recently improved 
to γ = 1 + O (log n/n) [17].

There are two versions of the decision uSVP in the lit-
erature: one given by Cai [4] (denoted, duSVP) and another 
by Regev [16] (denoted, duSVP′). Unlike the duSVP′ de-
fined by Regev, a search to decision reduction is not known 
for the duSVP. Cai also shows that duSVP is in co-AM for 
n1/4-unique lattices. We give three results here, all con-
cerning duSVP.

(i). We show that the search uSVPγ can be solved in 
polynomial time given an oracle for the duSVPγ /2.

(ii). The duSVP problem is in co-AM on 
(

n
log n

)1/4
-unique 

lattices and is in co-NP for n1/4-unique lattices.
(iii). The duSVP problem is NP-hard under randomized re-

ductions on (1 + 2−O (n2))-unique lattices.

It is unlikely that GapSVPγ is NP-hard for γ =(
n

log n

)1/2
, as otherwise the polynomial hierarchy collapses 

[6,5]. The same conclusion does not follows from item (ii) 
in case of duSVP as the duSVP is a promise problem (as 
opposed to a total problem) and, unlike GapSVP, we do 
not know how to handle the queries which do not satisfy 
the promise.

The results on duSVP can be interpreted as follows. 
Items (i)+(iii) indicate that duSVP is likely to be a difficult 
problem, especially if we assume that uSVP is a hard prob-
lem. On the other hand, item (ii) points out that duSVP

perhaps is not so hard on 
(

n
log n

)1/4
-unique lattices. Show-

ing that the polynomial hierarchy collapses if duSVP is 

NP-hard on 
(

n
log n

)1/4
-unique lattices is an open problem.

2. Preliminaries

For a positive integer k we use the notation [k] to de-
note the set {1, . . . , k}.

A lattice basis is a set of linearly independent vectors 
b1, . . . , bn ∈Rm . It is sometimes convenient to think of the 
basis as an m × n matrix B, whose n columns are the vec-
tors b1, . . . , bn . The lattice generated by the basis B will 
be written as L(B) and is defined as L(B) = {Bx|x ∈ Zn}. 
A vector v ∈ L is called a primitive vector of the lattice L
if it is not an integer multiple of another lattice vector ex-
cept ±v. In order for the input to be representable in a 
finite number of bits, we must assume that b1, . . . , bn are 

in Qm . By appropriately scaling the lattice by an integer 
factor, we can assume that the given lattice is over inte-
gers, i.e., b1, . . . , bn ∈ Zm . For the remainder of the paper, 
we will assume this unless otherwise stated. The successive 
minima λi(L) (where i = 1, . . . , n) of the lattice L is defined 
as the smallest radius of a sphere centered at the origin 
that contains at least i linearly independent lattice vectors. 
A lattice L is called γ -unique if λ2(L) > γλ1(L). In this pa-
per we are concerned with the following variants of the 
unique shortest vector problem.

uSVPγ : Given a γ -unique lattice basis B, find a vector 
v ∈ L(B) such that ‖v‖ = λ1(L(B)).

duSVPγ : Given a γ -unique lattice basis B, and an inte-
ger d, say “YES” if λ1(B) ≤ d and “NO” otherwise.

duSVP′
γ : Given a γ -unique lattice basis B = [b1, · · · , bn]

and a prime p > 2, say “YES” if p divides the co-
efficient of b1 in the shortest vector of the lattice 
L(B) and say “NO” otherwise.

There are two decision variants of the uSVP problem. 
Chronologically, the first one i.e., duSVP was defined im-
plicitly in [4] and explicitly in [5]. The second one i.e., 
duSVP′ , is given in [16] and has the desirable property that 
uSVPγ can be solved using an oracle that solves duSVP′

γ .
We will also need the following definition of the 

GapSVP problem.

GapSVPγ : Given a lattice basis B, and an integer d, say 
“YES” if λ1(B) ≤ d and “NO”, if λ1(B) > γ · d.

We now prove some useful results on lattices. The fol-
lowing lemma is taken from [12]. A proof is provided for 
completeness.

Lemma 1. Let B = (b1, . . . , bn) be a basis of a lattice L. For any 
two vectors u = ∑n

i=1 αibi, v = ∑n
i=1 βibi ∈ L such that u �=

±v and ‖u‖ = ‖v‖ = λ1(L), there exists j ∈ [n] such that α j �≡
β j (mod 2).

Proof. For the sake of contradiction, assume that there 
exists a lattice vector u = ∑n

i=1 αibi and a lattice vec-
tor v = ∑n

i=1 βibi such that ‖u‖ = ‖v‖ = λ1(L) and α j ≡
β j (mod 2) for all j ∈ [n]. But then, u+v

2 ∈ L and u−v
2 ∈ L. 

Since u �= ±v, both these vectors are non-zero. Also,∥∥∥∥u + v

2

∥∥∥∥
2

+
∥∥∥∥u − v

2

∥∥∥∥
2

= ‖u‖2 + ‖v‖2

2
= (λ1(L))2 .

But this implies that 0 < ‖ u+v
2 ‖, ‖ u−v

2 ‖ < λ1(L), which is a 
contradiction. �

We next define the LLL reduced basis [13].

Definition 1. Given a basis B = [b1 b2 . . . bn], the Gram–
Schmidt orthogonalization of B is defined by b̃i = bi −
i−1∑
j=1

μi, j b̃ j , where μi j = 〈bi ,b̃ j〉
〈b̃ j ,b̃ j〉 .

Note that the Gram–Schmidt orthogonal basis satisfies 
〈b̃i, ̃b j〉 = 0, for all i �= j.
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