
Information Processing Letters 116 (2016) 638–643

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Marking shortest paths on pushdown graphs does not 

preserve MSO decidability

Arnaud Carayol a, Olivier Serre b,∗
a LIGM (CNRS & Université Paris Est), France
b LIAFA (CNRS & Université Paris Diderot – Paris 7), France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 October 2015
Received in revised form 10 March 2016
Accepted 11 April 2016
Available online 30 May 2016
Communicated by Krishnendu Chatterjee

Keywords:
Formal methods
MSO logic
Pushdown graphs

In this paper we consider pushdown graphs, i.e. infinite graphs that can be described 
as transition graphs of deterministic real-time pushdown automata. We consider the 
case where some vertices are designated as being final and we build, in a breadth-first 
manner, a marking of edges that lead to such vertices (i.e., for every vertex that can 
reach a final one, we mark all out-going edges laying on some shortest path to a final 
vertex).
Our main result is that the edge-marked version of a pushdown graph may itself no longer 
be a pushdown graph, as we prove that the MSO theory of this enriched graph may be 
undecidable.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The original motivation of this paper comes from the 
following work plan: design algorithms working on infi-
nite graphs and computing classical objects from graph 
theory. One firstly targeted set of algorithms are naturally 
those computing spanning trees, e.g. spanning trees built 
by performing a breadth-first search or the ones built by 
performing a depth-first search. In particular, breadth-first 
search seems to be a good candidate as it can easily be 
defined by a smallest fixpoint computation.

Of course, to ensure termination one has to identify 
reasonable classes of infinite graphs: obviously such a class 
should provide finite description of its elements and the 
graphs should have some good decidability properties. The 
simplest such class is the class of transition graphs of 
pushdown automata: they are finitely described by the un-
derlying pushdown automata and they enjoy many good 
properties, in particular with respect to logic and games 

* Corresponding author.
E-mail address: olivier.serre@cnrs.fr (O. Serre).

(see e.g. [2,5]). In particular, monadic second-order logic 
(MSO) is decidable for any pushdown graph.

Another expected property of our algorithm is that it 
should be reflective1 in the following sense: the produced 
outputs should belong to the same class of structures 
as the inputs. Equivalently, in the setting of pushdown 
graphs, it means that we want to design an algorithm 
that takes as an input a pushdown graph and produces as 
an output another pushdown graph that is an isomorphic 
copy of the input graph enriched with a marking of some 
edges that corresponds to a breadth-first search spanning 
tree.

The main result of this paper is that such an algorithm 
does not exist, i.e. there is no algorithm that takes as an 
input a pushdown graph and returns a copy of it marked 
with a breadth-first search spanning tree. The roadmap 
to prove this result is to exhibit a pushdown graph such 
that when marked with a breadth-first search spanning 

1 In programming languages, reflection is the process by which a com-
puter program can observe and dynamically modify its own structure and 
behaviour. See [1] for an example of reflection in the richer setting of col-
lapsible pushdown automata and recursion schemes.

http://dx.doi.org/10.1016/j.ipl.2016.04.015
0020-0190/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2016.04.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:olivier.serre@cnrs.fr
http://dx.doi.org/10.1016/j.ipl.2016.04.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.04.015&domain=pdf


A. Carayol, O. Serre / Information Processing Letters 116 (2016) 638–643 639

tree leads to a graph with an undecidable MSO theory: as 
pushdown graphs enjoy decidable MSO theories it directly 
permits to conclude.

The paper starts by introducing in Section 2 the classi-
cal objects and formally defines the problem under study. 
Our main results are proven in Section 3 while we briefly 
discuss some consequences in Section 4.

2. Preliminaries

An alphabet A is a finite set of letters. In the sequel 
A∗ denotes the set of finite words over A and the empty 
word is written ε. The length of a word u is denoted by 
|u| and for any k ≥ 0, we let A≤k = {u | |u| ≤ k}. Let u and 
v be two finite words. Then u · v (or simply uv) denotes 
the concatenation of u and v .

Let A be an alphabet. An A-labeled (oriented) graph
is a pair G = (V , E) where V is a (possibly infinite) set 
of vertices and E ⊆ V × A × V is a (possibly infinite) set 
of edges. In the sequel we write v a−→ v ′ to denote that 
(v, a, v ′) ∈ E .

A vertex v ′ is reachable from a vertex v if there is a 
sequence v1, . . . , v� of vertices together with a sequence 
of letters a1, . . . , a�−1 such that v1 = v , v� = v ′ and vi

ai−→
vi+1 for every i = 1, . . . , � − 1.

2.1. Pushdown graphs

A deterministic real-time pushdown automaton is de-
fined as a tuple P = (Q , A, �, ⊥, qin, Q f in, δ) where Q is 
a finite set of control states, A is a finite input alphabet, �
is a finite stack alphabet, ⊥ ∈ � is a bottom-of-stack sym-
bol, qin ∈ Q is an initial state, Q f in ⊆ Q is a set of final 
states and δ : Q × � × A → Q × �≤2 is a partial transition 
function such that

• δ(q, ⊥, a) = (q′, u) ⇒ u ∈ (� \ {⊥})⊥ ∪ {⊥}, i.e. ⊥ can-
not be removed.

• δ(q, γ , a) = (q′, u) and γ �= ⊥ ⇒ u ∈ (� \ {⊥})≤2, i.e. ⊥
cannot be pushed.

A configuration of P is a pair (q, σ) ∈ Q × (� \ {⊥})∗⊥
consisting of a control state and a well-formed stack con-
tent. The initial configuration of P is (qin, ⊥) and the final 
configurations of P are those of the form (q f in, ⊥) with 
q f in ∈ Q f in .

Let (q, σ) and (q′, σ ′) be two configurations, and let 
a ∈ A be a letter. Then, there is an a-labelled transition
from (q, σ) to (q′, σ ′), denoted (q, σ) a−→(q′, σ ′), if and 
only if one has δ(q, γ , a) = (q′, u) where σ = γ σ ′′ and 
σ ′ = uσ ′′ , i.e. σ ′ is obtained from σ by replacing its top 
symbol γ by u.

The configuration graph of P is the A-labeled graph 
GP = (VP , EP ) where VP is the set of configurations of 
P and where EP is the transition relation defined by P . 
A graph isomorphic to a graph GP is called a pushdown 
graph.

Example 1. As a running example, consider the following 
pushdown automaton P = (Q , A, �, ⊥, qin, {q f in}, δ) where 

one lets Q = {qin, q f in, q�}, A = {a, b, �}, � = {a, b, ⊥} and 
δ be as follows:

• δ(qin, γ , a) = (qin, aγ ) and δ(qin, γ , b) = (qin, bγ ): in 
the initial state on reading a symbol in {a, b} it is 
copied on top of the stack.

• δ(qin, γ , �) = (q�, γ ): in the initial state on reading 
symbol � the state is switched to q� .

• For x ∈ {a, b} and γ �= ⊥, δ(q�, γ , x) = (q�, ε) if γ = x
and δ(q�, γ , x) = (q�, xγ ) if γ �= x; and δ(q�, γ , �) =
(q�, γ ): in the state q� an input letter � does not 
change the configuration while for an input letter in 
{a, b} the top symbol is popped if it is the same as the 
input symbol otherwise the letter is copied on top of 
the stack.

• δ(q�, ⊥, x) = (q f in, ⊥) for any x ∈ A: once the stack is 
emptied in the state q� one goes to the state q f in .

• δ(q f in, ⊥, x) = (q f in, ⊥) for any x ∈ A: once the config-
uration (q f in, ⊥) is reached it stays in forever.

The graph GP is depicted in Fig. 1.

We are interested in defining, in a breadth-first search 
manner, the set of configurations from which one can 
reach a final configuration. For this consider the follow-
ing increasing sequence (W i)i≥0 of configurations of P and 
call its limit W .

• W0 = {(q f in, ⊥) | q f in ∈ Q f in} consists only of the final 
configurations.

• W i+1 = W i ∪ {(q, σ) | ∃(q′, σ ′) ∈ W i and a ∈ A s.t. 
(q, σ) a−→(q′, σ ′)}.

Obviously, W is the set of all configurations from which a 
final configuration is reachable. Define for every configura-
tion (q, σ) its rank rk((q, σ)) to be the smallest i such that 
(q, σ) ∈ W i when exists and to be ∞ otherwise.

We now define a new graph ˜GP obtained from GP by 
marking those edges that go from a configuration to one 
with a strictly smaller rank (equivalently that decrease the 
rank by 1). First we let ˜A = A ∪ {a | a ∈ A} consists of A
together with a marked copy of each of its elements. Then 
we let ˜GP be the ˜A-labelled graph (VP , ˜EP ) where

• ((q, σ), a, (q′, σ ′)) ∈˜EP if ((q, σ), a, (q′, σ ′)) ∈ EP and 
rk((q′, σ ′)) ≥ rk((q, σ));

• ((q, σ), a, (q′, σ ′)) ∈˜EP if ((q, σ), a, (q′, σ ′)) ∈ EP and 
rk((q′, σ ′)) < rk((q, σ)).

Coming back to Example 1, the graph ˜GP is depicted in 
Fig. 2.

Finally, one can consider a graph built out of GP by 
marking only some (but at least one) shortest paths to 
a final configuration (the extreme case being when the 
marked paths form a spanning tree). More precisely, a 
well-formed marking of GP is an ˜A-labelled graph G =
(VP , E) such that:

• For every edge ((q, σ), a, (q′, σ ′)) ∈ EP , one has either 
((q, σ), a, (q′, σ ′)) ∈ E or ((q, σ), a, (q′, σ ′)) ∈ E .



Download English Version:

https://daneshyari.com/en/article/427029

Download Persian Version:

https://daneshyari.com/article/427029

Daneshyari.com

https://daneshyari.com/en/article/427029
https://daneshyari.com/article/427029
https://daneshyari.com

