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We consider the following question: given an (X, Y )-bigraph G and a set S ⊆ X , does G
contain two disjoint matchings M1 and M2 such that M1 saturates X and M2 saturates S? 
When |S| ≥ |X| − 1, this question is solvable by finding an appropriate factor of the graph. 
In contrast, we show that when S is allowed to be an arbitrary subset of X , the problem 
is NP-hard.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A matching in a graph G is a set of pairwise disjoint 
edges. A matching covers a vertex v ∈ V (G) if v lies in 
some edge of the matching, and a matching saturates a set 
S ⊆ V (G) if it covers every vertex of S .

An (X, Y )-bigraph is a bipartite graph with partite sets 
X and Y . The fundamental result of matching theory is 
Hall’s Theorem [5], which states that an (X, Y )-bigraph 
contains a matching that saturates X if and only if 
|N(S)| ≥ |S| for all S ⊆ X . While Hall’s Theorem does not 
immediately suggest an efficient algorithm for finding a 
maximum matching, such algorithms have been discovered 
and are well-known [1,6].

A natural way to extend Hall’s Theorem is to ask for 
necessary and sufficient conditions under which multiple
disjoint matchings can be found. This approach was taken 
by Lebensold, who obtained the following generalization of 
Hall’s Theorem.

Theorem 1.1 (Lebensold [9]). An (X, Y )-bigraph has k disjoint 
matchings, each saturating X, if and only if
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∑
y∈Y

min{k, |N(y) ∩ S|} ≥ k |S| (1)

for all S ⊆ X.

When k = 1, the left side of (1) is just |N(S)|, so 
Theorem 1.1 contains Hall’s Theorem as a special case. 
As observed by Brualdi, Theorem 1.1 is equivalent to a 
theorem of Fulkerson [3] about disjoint permutations of 
0, 1-matrices. Theorem 1.1 is also a special case of Lo-
vasz’s (g, f )-factor theorem [10]. Like Hall’s Theorem, 
Theorem 1.1 does not immediately suggest an efficient 
algorithm, but efficient algorithms exist for solving the 
(g, f )-factor problem [4], and these algorithms can be ap-
plied to find the desired k disjoint matchings. We discuss 
the algorithmic aspects further in Section 4.

A different extension was considered by Frieze [2], who 
considered the following problem:

Disjoint Matchings (DM)
Input: Two (X, Y )-bigraphs G1, G2 on the same vertex set.
Question: Are there matchings M1 ⊆ G1, M2 ⊆ G2 such 
that M1 ∩ M2 = ∅ and each Mi saturates X?

When G1 = G2, this problem is just the k = 2 case of the 
problem considered by Lebensold, and is therefore polyno-
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mially solvable. On the other hand, Frieze proved that the 
Disjoint Matchings problem is NP-hard in general.

In this paper, we consider the following disjoint-
matching problem, which can be naturally viewed as a 
restricted case of the Disjoint Matchings problem:

Single-Graph Disjoint Matchings (SDM)
Input: An (X, Y )-bigraph G and a vertex set S ⊆ X .
Question: Are there matchings M1, M2 ⊆ G such that M1 ∩
M2 = ∅, M1 saturates X , and M2 saturates S?

We call such a pair (M1, M2) an S-pair. When S = X , this 
problem is also equivalent to the k = 2 case of Lebensold’s 
problem. The problem SDM is similar to a problem consid-
ered by Kamalian and Mkrtchyan [7], who proved that the 
following problem is NP-hard:

Residual Matching
Input: An (X, Y )-bigraph G and a nonnegative integer k.
Question: Are there matchings M1, M2 ⊆ G such that M1 ∩
M2 = ∅, M1 is a maximum matching, and |M2| ≥ k?

When G has a perfect matching, we can think of the Resid-
ual Matching problem as asking whether there is some
S ⊆ X with |S| = k such that G has an S-pair. In contrast, 
the SDM problem asks whether some particular S admits 
an S-pair. Since k is part of the input to the Residual 
Matching problem, it is a priori possible that SDM could be 
polynomially solvable while the Residual Matching prob-
lem is NP-hard, since one might need to check exponen-
tially many candidate sets S .

In Section 2, we give a quick reduction from SDM to 
DM, justifying the view of SDM as a special case of DM, 
and in Section 3 we show that SDM is NP-hard, thereby 
strengthening Frieze’s result. In Section 4 we show that 
SDM is polynomially solvable under the additional restric-
tion |S| ≥ |X | − 1.

2. Reducing SDM to DM

In this section, we show that any instance of SDM with 
|S| < |X | − 1 reduces naturally to an instance of DM. Since 
SDM-instances with |S| ≥ |X |−1 are polynomially solvable, 
as we show in Section 4, this justifies the claim that SDM 
is a special case of DM.

Theorem 2.1. Let G be an (X, Y )-bigraph and let S ⊆ V (G)

with |S| < |X | − 1. Construct graphs G1 , G2 as follows:

V (G1) = V (G2) = V (G),

E(G1) = E(G),

E(G2) = E(G) ∪ {xy : x ∈ X − S, y ∈ Y }.
The graph G has an S-pair if and only if there are disjoint match-
ings M1 , M2 contained in G1 , G2 respectively, each saturat-
ing X.

Proof. If |Y | < |X |, then it is clear that G has no S-pair 
and that G1, G2 do not have matchings that saturate X , so 
assume that |Y | ≥ |X |.

First suppose that M1, M2 are disjoint matchings con-
tained in G1, G2 respectively, each saturating X . Let M ′

1 =
M1 and let M ′

2 = {e ∈ M2 : e ∩ X ⊆ S}. It is clear that 
(M ′

1, M
′
2) is an S-pair.

Now suppose that we are given an S-pair (M ′
1, M

′
2). In 

order to obtain the matchings M1, M2 in G1, G2 as needed, 
we need to enlarge M ′

2 so that it saturates all of X , rather 
than only saturating S . Let Y ′ = {y ∈ Y : y /∈ V (M ′

2)}, and 
let H = G2[(X − S) ∪ Y ′] − M ′

1.
We claim that H has a matching that saturates X − S , 

and prove this by verifying Hall’s Condition. Let any X0 ⊆
X − S be given. If |X0| = 1, say X0 = {x0}, then NH (X0)

contains all of Y ′ except possibly the mate of x0 in M1. 
Hence

|NH (X0)| ≥
∣∣Y ′∣∣ − 1 = |Y | − |S| − 1

≥ |X | − |S| − 1 ≥ 1 = |X0| ,
as desired. On the other hand, if |X0| ≥ 2, then NH (X0)

contains all of Y ′ , so that

|NH (X0)| =
∣∣Y ′∣∣ = |Y | − |S| ≥ |X | − |S| ≥ |X0| .

Hence Hall’s Condition holds for H . Now let M be a per-
fect matching in H , let M1 = M ′

1, and let M2 = M ′
2 ∪ M . 

By construction, M2 is a matching in G2 that saturates X . 
It is clear that M1 ∩ M2 = ∅, since the edges in M ′

1 were 
omitted from H . Hence M1 and M2 are as desired. �
3. Finding two matchings is NP-hard

Given an instance (G, S) of SDM, we call a pair of 
matchings (M1, M2) satisfying the desired condition an 
S-pair. When G ′ is a subgraph of G and S ′ = S ∩ V (G ′), we 
say that an S-pair (M1, M2) contains an S ′-pair (M ′

1, M
′
2)

if M ′
1 ⊆ M1 and M ′

2 ⊆ M2.
We prove that SDM is NP-hard via a reduction from 

3SAT. Let c1, . . . , cs be the clauses and θ1, . . . , θt be the 
variables of an arbitrary 3SAT instance. We define a graph 
G as follows.

For each variable θi , let Hi be a copy of the cycle C4s , 
with vertices vi,1, . . . , vi,4s written in order. Define

Xi = {vi, j : j is even},
Si = {vi, j : j ≡ 2 (mod 4)}.
Since Hi is an even cycle, it has exactly two perfect match-
ings, one containing the edge vi,1 vi,2 and the other con-
taining the edge vi,2 vi,3. In an Si -pair (M1, M2) for Hi , 
we have vi,1 vi,2 ∈ M1 if and only if vi,2 vi,3 ∈ M2, and the 
same argument holds for the other vertices of Si . Thus, Hi
has only two possible Si -pairs, illustrated in Fig. 1. We call 
these pairs the true pair and false pair for Hi .

In the full graph G , we will not add any new edges 
incident to the vertices of Xi , so it will still be the case 
that any S-pair in the full graph induces either the true 
pair or the false pair in Hi . We use these pairs to encode 
the truth values of the corresponding 3SAT-variables.

For each clause ck , let Lk be a copy of K2, with vertices 
wk , zk . Let G = (⋃

j H j
) ∪ (⋃

k Lk
)
. Add edges to G as fol-

lows: if the variable θi appears positively in the clause ck , 
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