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The maximum weight independent set (WMIS) problem is a well-known NP-hard problem. 
It is a generalization of the maximum cardinality independent set problem where all the 
vertices have identical weights. There is an O(n2) time algorithm to compute a WMIS 
for cocomparability graphs by computing a maximum weight clique on the corresponding 
complement of the graph [1]. We present the first O(m + n) time algorithm to compute 
a WMIS directly on the given cocomparability graph, where m and n are the number of 
edges and vertices of the graph respectively. As a corollary, we get the minimum weight 
vertex cover of a cocomparability graph in linear time as well.

© 2015 Published by Elsevier B.V.

1. Introduction

Given a graph G(V , E), an independent set (also called 
stable set) I ⊆ V , is a subset of pairwise non-adjacent ver-
tices. For G(V , E, w) being a graph together with a weight 
function w : V → R, the weighted maximum independent 
set (WMIS) problem asks for an independent set I ⊆ V
such that 

∑
v∈I w(v) is maximum. This problem is a gen-

eralization of the maximum cardinality independent set 
problem where all vertices have equal weights. The WMIS 
problem has been widely studied as it naturally arises in 
different applications, such as scheduling [2], combinato-
rial auctions [3], molecular biology [4] to name a few. The 
problem is NP-hard for arbitrary graphs; we restrict our-
selves to the class of cocomparability graphs and present a 
linear time algorithm for this case.

Let G(V , E) be a graph where n = |V | and m = |E|, 
and let N(v) (resp. N[v]) denote the open (resp. closed) 
neighbourhood of vertex v; N(v) = {u ∈ V | uv ∈ E} and 
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N[v] = N(v) ∪ {v}. A graph G(V , E) is a cocomparability
graph if its complement is a comparability graph. A graph 
G(V , E) is a comparability graph if E admits an acyclic 
transitive orientation. That is, if uv, v w ∈ E , and they are 
oriented u → v , and v → w then uw has to be con-
tained in E and must be oriented u → w . Cocompara-
bility graphs are a subfamily of perfect graphs and have 
been well studied. Many problems on this graph class are 
solved by computing the complement of the given graph, 
and translating the problem into its complement problem 
on comparability graphs. This transformation necessitates 
�(n2) computation, whereas for some problems direct so-
lutions in O(n + m) are possible. Finding a WMIS in a 
cocomparability graph, for example, is equivalent to find-
ing a maximum weighted clique in its complement. There 
exists a linear time dynamic programming algorithm to 
compute the maximum weight clique on a comparability 
graph, given a transitive orientation of the edges [1]. This 
implies an O(n2) time algorithm to compute a WMIS on a 
cocomparability graph.

The idea to solve problems directly on cocomparability 
graphs instead of going over to the complement graph has 
been around for a while and a number of problems have 

http://dx.doi.org/10.1016/j.ipl.2015.12.001
0020-0190/© 2015 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.ipl.2015.12.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:ekkehard.koehler@b-tu.de
mailto:lalla@cs.toronto.edu
http://dx.doi.org/10.1016/j.ipl.2015.12.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.12.001&domain=pdf


392 E. Köhler, L. Mouatadid / Information Processing Letters 116 (2016) 391–395

been solved in this way, such as domination [5] and the 
minimum feedback vertex set problem [6]. Recently, there 
have been new approaches for solving problems directly 
on the given cocomparability graph. In [7] for instance, 
Mertzios and Corneil presented the first polynomial time 
algorithm to solve the longest path problem on cocom-
parability graphs, and in [8] Corneil et al. gave the first 
near linear time certifying algorithm to compute a mini-
mum path cover, and thus a Hamilton path (if one exists), 
directly on cocomparability graphs. Motivated by this idea, 
we present the first linear time algorithm to compute a 
WMIS directly on a cocomparability graph. The unweighted 
case has been known to take O(m +n) time [9]. As a corol-
lary to our result, we also get the minimum weight vertex 
cover of a cocomparability graph in linear time.

Cocomparability graphs have a vertex ordering char-
acterization, known as a cocomparability order σ , or an 
umbrella-free order; more precisely, an ordering σ = v1 ≺σ

v2 ≺σ · · · ≺σ vn is a cocomparability order iff for any triple 
u ≺σ v ≺σ w with uw ∈ E , either uv ∈ E or v w ∈ E or 
both [5]. In other words, σ does not contain an umbrella, 
which is a triple of vertices u ≺σ v ≺σ w with uw ∈ E
but uv, v w /∈ E . In [10], McConnell and Spinrad presented 
an algorithm to compute such an ordering in O(m + n)

time. We use their algorithm, denoted as σ ← ccorder(G)

to compute such an ordering.
This paper is organized as follows. In Section 2 we 

present an overview of the algorithm, followed by its for-
mal description and in Section 3, we prove the correctness 
of the algorithm, present implementation details and the 
complexity analysis.

2. The algorithm

Let G(V , E, w) be a weighted cocomparability graph 
and let X ⊆ V be the subset of vertices with non-positive 
weight, i.e., X = {v : w(v) ≤ 0}. Any vertex v ∈ X that be-
longs to an independent set S will not increase the total 
weight of S . Therefore if X 	= ∅, we can restrict ourselves 
to G[V \X], which is also a cocomparability graph that can 
easily be computed in O(m + n) time.

Suppose G(V , E, w) is a cocomparability graph with 
positive weight function w : V →R>0. Using the algorithm 
in [10], we compute a cocomparability order σ of V in 
O(m +n) time where σ = v1 ≺σ v2 ≺σ · · · ≺σ vn . We then 
construct a new permutation τ of the vertices as follows: 
we process one vertex at a time according to the order im-
posed by σ from left to right. To each vi we associate an 
updated weight w̃(vi) and an [independent] set Svi (con-
taining vi ) of total weight w̃(vi). The vertices from v1 to 
vi are then reordered such that the new ordering is non-
decreasing with respect to their updated weights w̃; τi de-
notes the resulting permutation on the processed vertices 
v1, . . . , vi . In other words, for vertices vk, v j (1 ≤ k, j ≤ i, 
k 	= j),

if vk ≺τi v j then w̃(vk) ≤ w̃(v j). (1)

Initially τ1 is just {v1}, w̃(v1) = w(v1), and Sv1 = {v1}. 
For every vertex vi (i > 1), we scan through τi−1 from 
right to left, looking for the rightmost non-neighbour of vi . 

Algorithm 1: CCWMIS
Input: G = (V , E, w), w : V → R>0

Output: A maximum weight independent set together with its 
weight

1 σ ← ccorder(G(V , E)) ; // σ = (v1, v2, . . . , vn)

2 for i ← 1 to n do
3 w̃(vi) ← w(vi);
4 Svi ← {vi};

5 τ1 ← (v1); // Constructing τi

6 for i ← 2 to n do
7 Choose u to be rightmost non-neighbour of vi with respect to 

τi−1;
8 if u exists then
9 w̃(vi) ← w(vi) + w̃(u);

10 Svi ← {vi} ∪Su ;

11 τi ← insert(vi , τi−1);
12 // Insert vi into τi−1 such that τi stays ordered with respect 

to w̃(·)
13 z ← the rightmost vertex in τn;
14 return Sz and w̃(z);

Let u denote such a vertex (if it exists); w̃(vi) and Svi are 
then set to

w̃(vi) = w(vi) + w̃(u)

Svi = {vi} ∪ Su .

If no such vertex u exists, then

w̃(vi) = w(vi)

Svi = {vi}.
τi is the permutation of {v1, . . . , vi} created by insert-
ing vi into τi−1 such that (1) holds and thus preserving 
the non-decreasing order of the updated weights. Since 
the weights are strictly positive, it is easy to see that 
w̃(vi) = w(vi) + w̃(u) implies w̃(vi) > w̃(u) and thus also 
implies u ≺τi vi .

Notice that if there exists a vertex x in τi−1 such that 
w̃(x) = w̃(vi), then vi is inserted to the right of vertex x
in τi−1. We say that a vertex vi has been processed as soon 
as it is inserted into τi−1 and thus τi is created. When all 
vertices are processed, we have determined τn . We return 
Sz as a maximum weight independent set of G and w̃(z)
as its corresponding total weight, where z is the rightmost 
vertex in τn .

We now present the formal description of the algo-
rithm; recall that ccorder(G) is the procedure presented 
in [10] to compute a cocomparability order in O(m + n)

time.
We illustrate the algorithm using a cocomparability 

graph and a corresponding cocomparability ordering given 
in Fig. 1. Table 1 shows how τi is created by the algorithm. 
Recall that the vertices are processed in σ ’s order and ver-
tex vi is inserted into τi−1 according to its updated weight.

3. Correctness, complexity analysis, and robustness

Recall that Svi is the set associated with vi recursively 
constructed by finding u, the rightmost non-neighbour of 
vi in τi−1; in other words Svi denotes a set of vertices 
including vi whose weights sum up to w̃(vi). Therefore 
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