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A proper edge-coloring of a simple graph G is called a vertex distinguishing edge-coloring 
if for any two distinct vertices u and v of G , the set of the colors assigned to the 
edges incident to u differs from the set of the colors assigned to the edges incident 
to v . We extend such distinguishing edge colorings to proper total colorings with many 
distinguishing constraints and color several kinds of graphs totally with the least number of 
colors such that the graphs admit proper total colorings having at least four distinguishing 
constraints.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and concepts

Labeled graphs are becoming an increasingly useful 
family of mathematical models for a broad range of ap-
plications, such as time tabling and scheduling, frequency as-
signment, register allocation, computer security and so on. In 
[2], Burris and Schelp introduced a proper edge-coloring 
of a simple graph G that is called a vertex distinguishing 
edge-coloring (vdec) if for any two distinct vertices u and 
v of G , the set of the colors assigned to the edges inci-
dent to u differs from the set of the colors assigned to 
the edges incident to v . The minimum number of colors 
required for all vertex distinguishing colorings of G is de-
noted by χ ′

s(G). Let nd = nd(G) denote the number of all 
vertices of degree d in G . It is clear that 

(χ ′
s(G)

d

) ≥ nd for 
all d with respect to δ(G) ≤ d ≤ �(G). A graph is vertex-
distinguishably edge-colorable, or a vdec graph, if it contains 
no more than one isolated vertex and no isolated edges [2]. 
Burris and Schelp [2] presented the following conjecture:
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Conjecture 1. Let G be a vdec graph, and let k be the min-
imum integer such that 

(k
d

) ≥ nd for δ(G) ≤ d ≤ �(G). Then 
χ ′

s(G) = k or k + 1.

A weak version of a vdec introduced in [5] is the ad-
jacent vertex distinguishing edge-coloring (avdec). Zhang 
et al. [5] asked that for every edge xy of G , the set of the 
colors assigned to the edges incident to x differs from the 
set of the colors assigned to the edges incident to y in an 
avdec, and used the notation χ ′

as(G) to denote the least 
number of k colors required for which G admits an avdec. 
They proposed a conjecture: Every simple graph G having 
no isolated edges and at most one isolated vertex and be-
ing not a cycle of five vertices holds χ ′

as(G) ≤ �(G) + 2. 
Successively, Zhang et al. [6] investigated the chromatic 
number χ ′′

as(G) and conjectured: χ ′′
as(G) ≤ �(G) +3 for ev-

ery simple graph G . Surprisingly, it is very difficult to settle 
down the above three conjectures, even to verify them for 
simpler graphs [1]. Many distinguishing types of colorings 
are investigated [4].

We use standard notation and terminology of graph 
theory. Graphs mentioned here are simple, undirected and 
finite. The shorthand notation [α, β] is used to denote a 
set {α, α + 1, . . . , β} in the following, where integers α, β
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hold β > α ≥ 0. The set of vertices adjacent to a vertex 
x of a graph H is denoted by N(x). We call H simple if 
degH (x) = |N(x)| for every x ∈ V (H), where degH (x) is the 
degree of x. Let f be a proper total coloring of a simple 
graph G . The colors of neighbors of a vertex u of G and the 
colors of edges incident to u form four color sets C( f , u) =
{ f (ux) : x ∈ N(u)}, C〈 f , u〉 = { f (x) : x ∈ N(u)} ∪ { f (u)}, 
C[ f , u] = C( f , u) ∪{ f (u)}, and C2[ f , u] = C( f , u) ∪C〈 f , u〉. 
Notice that degG(u) + 1 ≤ |C2[ f , u]|. These color sets give
rise to a couple of distinguishing total colorings. We have 
two sets of distinguishing constraints in the following.

For the purpose of convenience, let F3s(n) be the set 
of simple graphs with n ≥ 3 vertices and no isolated 
edges as well as at most one isolated vertex. The nota-
tion G(h, u) 
= G(h, v) means that four distinguishing con-
straints C( f , u) 
= C( f , v), C〈 f , u〉 
= C〈 f , v〉, C[ f , u] 
=
C[ f , v] and C2[ f , u] 
= C2[ f , v] exist, simultaneously.

Definition 1. For a simple graph G ∈ F3s(n) let f be a 
proper total k-coloring from V (G) ∪ E(G) to [1, k]. We 
call f an (8)-distinguishing total coloring (8-vdtc) if it holds 
G(h, u) 
= G(h, v) for distinct vertices u, v ∈ V (G). The 
minimum number of k colors required for which G ad-
mits an 8-vdtc is denoted as χ ′′

8s(G). A 4-avdtc is a proper 
total coloring holding G(h, u) 
= G(h, v) for every edge 
uv ∈ E(G); and the chromatic number χ ′′

4as(G) is the min-
imum number of k colors required for which G admits a 
4-avdtc.

Clearly, some simple graphs do not admit 8-vdtcs or 
4-avdtcs, for example, such are complete graphs.

2. Graphs having 8-vdtcs or 4-avdtcs

Lemma 1. A graph G ∈ F3s(n) admits a total coloring f with 
C〈 f , u〉 
= C〈 f , v〉 for distinct vertices u, v ∈ V (G) (resp. for 
every edge uv ∈ E(G)) if and only if N(u) ∪ {u} 
= N(v) ∪ {v}
for distinct u, v ∈ V (G) (resp. every edge uv ∈ E(G)).

Proof. To show the proof of ‘if’, we take a total color-
ing f with C〈 f , u〉 
= C〈 f , v〉 for distinct vertices u, v ∈
V (G). If uv ∈ E(G), C〈 f , u〉 
= C〈 f , v〉 means that { f (x) :
x ∈ N(u)} \ { f (u), f (v)} 
= { f (x) : x ∈ N(v)} \ { f (u), f (v)}, 
and furthermore N(u) ∪ {u} 
= N(v) ∪ {v}. If uv /∈ E(G), 
C〈 f , u〉 
= C〈 f , v〉 means N(u) = N(v), or N(u) 
= N(v). No 
matter which one of two cases occurs, we have N(u) ∪
{u} 
= N(v) ∪ {v}.

To show the proof of ‘only if’, it is straightforward 
to provide a total coloring h of a graph G with N(u) ∪
{u} 
= N(v) ∪ {v} for distinct u, v ∈ V (G) (including ev-
ery edge uv ∈ E(G)). In fact, we can set a bijection h
from V (G) ∪ E(G) to {1, 2, . . . , |V (G)| + |E(G)|}. Clearly, 
C〈h, u〉 
= C〈h, v〉 for distinct u, v ∈ V (G) (including every 
edge uv ∈ E(G)) by the choice of G . �
Theorem 2. A tree T with n ≥ 3 vertices and n2(T ) = 0 holds

n1(T ) ≤ χ ′′
8s(T ) ≤ n1(T ) + 1. (1)

The bounds are sharp.

Proof. First of all, we consider that the tree T is a star 
K1,m , where V (K1,m) = {u, vi : i ∈ [1, m]} and E(K1,m) =
{uvi : i ∈ [1, m]}. We define a total coloring f of K1,m as: 
f (vi) = i for i ∈ [1, m], f (u) = m + 1, and f (uv j) = j − 1
for j ∈ [2, m], and f (uv1) = m. Clearly, f is an 8-vdtc, and 
χ ′′

8s(K1,m) ≤ max f (V (K1,m) ∪ E(K1,m)) = n1(K1,m) + 1. On 
the other hand, χ ′′

8s(K1,m) ≥ �(K1,m) + 1 = n1(K1,m) + 1. 
Thereby, χ ′′

8s(K1,m) = n1(K1,m) + 1.
Assume that T is a tree having n2(T ) = 0 and diame-

ter at least three. So, there are at least two vertices w, w ′
of T such that w is adjacent to degT (w) − 1 leaves of T , 
and w ′ is adjacent to degT (w ′) − 1 leaves of T . We call 
such vertices w, w ′ as the end-nodes of T . In fact, each 
longest path of T contains at least two end-nodes. Suppose 
that w0 is an end-node with the smallest degree among 
the end-nodes of T . Notice that degT (w0) ≥ 3 according to 
the theorem’s hypothesis. Let N(w0) = {u0, ui : i ∈ [1, t]}, 
where t = degT (w0) −1 ≥ 2, and degT (ui) = 1 for i ∈ [1, t], 
degT (u0) ≥ 3. We have a tree H obtained by deleting 
u1, u2 . . . , ut from T such that n1(H) +t −1 = n1(T ). Notice 
that H holds n2(H) = 0 and |H | < |T |. By induction hy-
pothesis, H admits an 8-vdtc g having n1(H) ≤ χ ′′

8s(H) ≤
n1(H) + 1.

Case 1. |g(V (H) ∪ E(H))| = n1(H). We extend the 8-vdtc 
g to a total coloring g′ of T as: g′(z) = g(z) for z ∈ V (H) ∪
E(H) ⊂ V (T ) ∪ E(T ); g′(w0ui) = n1(H) + i for i ∈ [1, t]; 
g′(ui) = n1(H) + i − 1 for i ∈ [2, t]; and g′(u1) = n1(H) + t . 
Clearly, g′ is an 8-vdtc of T such that n1(T ) ≤ χ ′′

8s(T ) ≤
n1(T ) + 1 since n1(H) + t = n1(T ) + 1.

Case 2. |g(V (H) ∪ E(H))| = n1(H) + 1. There exists a 
color k0 which does not appear at any leaf of H , that 
is, no edge w jl j with degH (w j) ≥ 2 and degH (l j) = 1 is 
colored with the color k0. We define another total col-
oring h of T in the following Case 2.1 and Case 2.2. Let 
M = (V (T ) \ {ui : i ∈ [1, t]}) ∪ (E(T ) \ {w0ui : i ∈ [1, t]}).

Case 2.1. g(w0) 
= k0. We set h(w0u1) = k0, h(w0ui) =
n1(H) + i for i ∈ [2, t]; h(us) = n1(H) + 1 + s for s ∈
[1, t − 1], h(ut) = k0; h(z) = g(z) for z ∈ M . We check 
the color sets of T . Let F (h, z) = {C(h, z), C〈h, z〉, C[h, z],
C2[h, z]} for every vertex z ∈ V (T ). The notation F (h, x) 
=
F (h, y) for distinct x, y ∈ V (T ), in the following argu-
ment, means one of four cases C(h, y) 
= C(h, x), C〈h, y〉 
=
C〈h, x〉, C[h, y] 
= C[h, x] and C2[h, y] 
= C2[h, x].

(1.1) Since every vertex z ∈ M holds C(h, z) = C(g, z), 
C〈h, z〉 = C〈g, z〉, C[h, z] = C[g, z] and C2[h, z] = C2[g, z]. 
So F (h, z) 
= F (h, z′) for distinct z, z′ ∈ M .

(1.2) Notice that w0 is adjacent to u2, degT (w0) ≥ 3, 
h(w0u2) = n1(H) + 2 and h(u2) = n1(H) + 3. Thereby, 
F (h, w0) 
= F (h, x) for x ∈ V (T ) \ {w0}.

(1.3) For every vertex ui ∈ N(w0), i ∈ [1, t − 1], we can 
conclude that F (h, ui) 
= F (h, x) for x ∈ V (T ) \ {ui}, since 
degT (w0) = t + 1 ≥ 3. The last vertex ut has C(h, ut) =
{h(w0ut)} = {n1(H) + t}, C〈h, ut〉 = {h(w0), k0}, C[h, ut] =
{h(ut), n1(H) + t} and C2[h, ut] = {h(w0), k0, n1(H) + t}. 
Only the color set C〈h, ut〉 = {h(w0), k0} may be equal 
to some C〈h, x〉 for some one-degree vertex x ∈ V (T ) \
{w0, u0}, and we recolor ut with h(u0) such that C〈h, ut〉 =
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