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An acyclic k-coloring of a graph is a proper vertex k-coloring such that every bichromatic 
subgraph, induced by this coloring, contains no cycles. A graph is acyclically k-colorable 
if it has an acyclic k-coloring. In this paper, we prove that every acyclically 4-colorable 
triangulation with minimum degree more than 3 contains at least four odd-vertices. 
Moreover, we show that for an acyclically 4-colorable triangulation with minimum 
degree 4, if it contains exactly four odd-vertices, then the subgraph induced by its four 
odd-vertices is triangle-free and claw-free.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple and fi-
nite. For a graph G , we denote by V (G), E(G), δ(G) and 
�(G) the set of vertices, the set of edges, the minimum 
degree and maximum degree of G , respectively. For a ver-
tex u of G , dG(u) is the degree of u in G . We call u a 
k-vertex if dG (u) = k. If k is an odd number, we say u to be 
an odd-vertex, and otherwise an even-vertex. If dG(u) > 0, 
then each adjacent vertex of u is called a neighbor of u. 
The set of all neighbors of u in G is denoted by NG(u). 
Note that NG (u) does not include u itself. We then write 
NG [u] = NG(u) ∪ {u}. For a subset V ′ ⊆ V (G), we denote 
by G[V ′] the subgraph of G induced by V ′ . For more 
notations and terminologies, we refer the reader to the 
book [1].

A k-coloring of G is an assignment of k colors to V (G)

such that no two adjacent vertices are assigned the same 
color. Let f be a k-coloring of a graph G , and H be a sub-
graph of G . We denote by f (H) the set of colors assigned 
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to V (H) under f . For a cycle C of G , if | f (C)| = 2, then 
we call C a bichromatic cycle of f , or we say f contains 
bichromatic cycle C . If f does not contain any bichromatic 
cycle, then we call f an acyclic k-coloring of G . The acyclic 
chromatic number A(G) of a graph G is the least num-
ber of colors needed in any acyclic coloring of G . Bounds 
on A(G) in terms of the maximum degree �(G) of G in-
clude the following: A(G) ≤ 4 if �(G) = 3 [13], A(G) ≤ 5 if 
�(G) = 4 [9], A(G) ≤ 7 if �(G) = 5 [16], which improves 
the result that A(G) ≤ 9 if �(G) = 5 [11], and A(G) ≤ 11
if �(G) = 6 [14].

The acyclic colorings was first studied by Grünbaum 
[13], who wrote a long paper to investigate the acyclic 
colorings of planar graphs. He proved that every pla-
nar graph is acyclically 9-colorable, and conjectured that 
five colors are sufficient. Sure enough, three years later, 
Borodin [2] (also see [3]) gave a proof of Grünbaum’s con-
jecture. Indeed, five is the best possible as there exist pla-
nar graphs without acyclic 4-colorings [13]. In 1973, Weg-
ner [21] constructed a 4-colorable planar graph G , each 
4-coloring of which possesses a cycle in every bichromatic 
subgraph. Afterwards Kostochka and Melnikov [15] showed 
that graphs with no acyclic 4-coloring can be found among 
3-degenerated bipartite planar graphs.
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The research on acyclically 4-colorable planar graphs 
always attracted much attentions. In 1999, Borodin, Kos-
tochka, and Woodall [7] showed that planar graphs under 
the absence of 3- and 4-cycles are acyclically 4-colorable; 
In 2006, Montassier, Raspaud, and Wang [19] proved that 
planar graphs, without 4-,5-, and 6-cycles, or without 
4-, 5-, and 7-cycles, or without 4-, 5-, and intersecting 
3-cycles, are acyclically 4-colorable; In 2009, Chen and 
Raspaud [10] proved that if a planar graph G has no 4-, 
5-, and 8-cycles, then G is acyclically 4-colorable; Borodin 
[4,5] showed that planar graphs without 4- and 6-cycles, 
or without 4- and 5-cycles are acyclically 4-colorable; 
Recently [6], Borodin proved that planar graphs without 
4- and 5-cycles are acyclically 4-choosable.

A planar graph G is called a triangulation if adding 
any edge to G results in a nonplanar graph. The dual
graph G∗ of a plane graph G is a graph that has a ver-
tex corresponding to each face of G , and an edge join-
ing two neighboring faces for each edge in G . It is well-
known that the dual graphs of triangulations are planar 
cubic 3-connected graphs. Observe that G is an acyclically 
4-colorable triangulation if and only if its dual graph G∗
contains three Hamilton cycles such that each edges of G∗
is just contained in two of them. Since the problem of de-
ciding whether a planar cubic 3-connected graph contains 
a Hamilton cycle is NP-complete [12], we can deduce that 
the problem of deciding whether a triangulation is acycli-
cally 4-colorable is NP-complete. In addition, it has been 
shown that the acyclic 4-colorability is NP-complete for 
planar graphs with maximum degree 5, 6, 7, and 8 respec-
tively and for planar bipartite graphs with the maximum 
degree 8 [18,17,20].

As far as we know, there are no papers investigating 
the acyclic 4-colorability of triangulations. Because there 
exist triangulations without acyclic 4-colorings, we are in-
terested in studying what the characteristics and structures 
of acyclically 4-colorable triangulations are. In this paper, 
we prove that an acyclic 4-colorable triangulation G with 
δ(G) ≥ 4 contains at least four odd-vertices. Furthermore, 
for an acyclic 4-colorable triangulation with minimum de-
gree 4 and exactly four odd-vertices, we show that the 
subgraph induced by its four odd-vertices is triangle-free 
and claw-free.

2. Main results

A k-cycle C is a cycle of length k. If k is even, we call 
C an even cycle, otherwise, an odd cycle. A cycle is called 
separating k-cycle in a graph embedded on the plane if it 
is a k-cycle such that both the interior and the exterior 
contain one or more vertices. A n-wheel Wn (or simply 
wheel W) is a graph with n + 1 vertices (n ≥ 3), formed 
by connecting a single vertex (called the center of Wn) to 
all vertices of a n-cycle. A subgraph is called a k-wheel sub-
graph of a triangulation G if it is isomorphic to a k-wheel. 
Obviously, when G is 4-connected, it follows that any sub-
graph induced by a k-vertex and all of its neighbors is a 
k-wheel subgraph of G .

Let W be a 4-wheel subgraph of G . The operation of con-
tracting 4-wheel W on u, w of G , denoted by Du,w

W (G), is 
identifying u, w and the center of W and then deleting re-

sulting parallel edges. We denote by ζ u,w
W (G) the resulting 

graph by conducting operation Du,w
W (G), and (u, w) the 

corresponding identified vertex in ζ u,w
W (G). Clearly, when 

N(u) ∩ N(w) ⊆ N[v] and dG (x) ≥ 5 and dG (y) ≥ 5, it fol-
lows that ζ u,w

W (G) is still a triangulation, and

dζ
u,w
W (G)((u, w)) = dG(u) + dG(w) − 4,

dζ
u,w
W (G)(x) = dG(x) − 2,

dζ
u,w
W (G)(y) = dG(y) − 2, (1)

where {x, y} = NG(v) \ {u, w}.

Lemma 2.1. If G is a triangulation with a 4-vertex v and an 
acyclic 4-coloring f , then the following holds.

(1) | f (NG(v))| = 3.
(2) There exists a pair of nonadjacent neighbors v1, v3 of v

receiving the same color, and the set of their common neighbors 
is NG [v] \ {v1, v3}.

(3) The neighbors of v other than v1, v3 receive the different 
colors and these two vertices are of degree at least 5.

Proof. (1) immediately follows from the acyclicality of f . 
So, NG(v) contains two nonadjacent neighbors, v1, v3 such 
that f (v1) = f (v3). Let {v2, v4} = NG(v) \ {v1, v3}. Then, 
f (v2) 	= f (v4). Suppose that there exists a vertex u ∈
N(v1) ∩ N(v3) but u /∈ {v, v2, v4}, then either v1 v2 v3uv1, 
or v1 v v3uv1, or v1 v4 v3uv1 is a bichromatic cycle. This 
contradicts with f , and hence (2) holds. For (3), it can be 
directly deduced from (2). �

If an acyclically 4-colorable triangulation contains a 
3-vertex, then the resulting graph by deleting the 3-vertex 
and its incident edges is still acyclically 4-colorable. Thus, 
in what follows we mainly consider acyclically 4-colorable 
triangulations without 3-vertices (i.e. with minimum de-
gree 4), and use T 4 to denote the class of such triangu-
lations with exactly four odd-vertices. Further, for a graph 
G ∈ T 4, we use V 4(G) to denote the set of its four odd-
vertices of G . According to the Euler formula, one can 
readily check that every G ∈ T 4 contains at least four 
4-vertices.

For a 4-vertex v in a graph G ∈ T 4, if there exist a 
pair of nonadjacent vertices u, w ∈ NG(v) receiving the 
same color under an acyclic 4-coloring of G , such that 
ζ

u,w
W (G) is also a graph in T 4, then we refer to v as a con-

tractible vertex of G . According to Lemma 2.1, we can see 
that for any triangulation G ∈ T 4, ζ v1,v2

W (G) is still acycli-
cally 4-colorable, where f is an arbitrary acyclic 4-coloring 
of G , v is a 4-vertex, and v1, v2 ∈ NG(v) satisfying 
f (v1) = f (v2). Moreover, let {v3, v4} = NG(v) \ {v1, v2}. 
If dG (v3) ≥ 6 and dG (v4) ≥ 6, then δ(ζ v1,v2

W (G)) ≥ 4 and v
is a contractible vertex.

Theorem 2.2. Every acyclically 4-colorable triangulation G
with δ(G) ≥ 4 contains at least four odd-vertices.

Proof. It suffices to consider δ(G) = 4 because G contains 
at least twelve 5-vertices when δ(G) = 5 by the Euler for-
mula.

If the conclusion fails to hold when δ(G) = 4, let G ′
be a counterexample on the fewest vertices to the the-
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