Acyclically 4-colorable triangulations

Enqiang Zhu ${ }^{\text {a,b }}$, Zepeng Li ${ }^{\text {a,b }}$, Zehui Shao ${ }^{\text {a,c }}$, Jin $\mathrm{Xu}^{\text {a,b,* }}$
${ }^{\text {a }}$ School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
${ }^{\mathrm{b}}$ Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, China
c School of Information Science and Engineering, Chengdu University, Chengdu, 610106, China

A R T I CLE INFO

Article history:

Received 15 October 2014
Received in revised form 5 December 2015
Accepted 11 December 2015
Available online 11 January 2016
Communicated by X . Wu

Keywords:

Triangulation
Acyclic 4-coloring
Claw
Triangle

Abstract

An acyclic k-coloring of a graph is a proper vertex k-coloring such that every bichromatic subgraph, induced by this coloring, contains no cycles. A graph is acyclically k-colorable if it has an acyclic k-coloring. In this paper, we prove that every acyclically 4-colorable triangulation with minimum degree more than 3 contains at least four odd-vertices. Moreover, we show that for an acyclically 4-colorable triangulation with minimum degree 4 , if it contains exactly four odd-vertices, then the subgraph induced by its four odd-vertices is triangle-free and claw-free.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple and finite. For a graph G, we denote by $V(G), E(G), \delta(G)$ and $\Delta(G)$ the set of vertices, the set of edges, the minimum degree and maximum degree of G, respectively. For a vertex u of $G, d_{G}(u)$ is the degree of u in G. We call u a k-vertex if $d_{G}(u)=k$. If k is an odd number, we say u to be an odd-vertex, and otherwise an even-vertex. If $d_{G}(u)>0$, then each adjacent vertex of u is called a neighbor of u. The set of all neighbors of u in G is denoted by $N_{G}(u)$. Note that $N_{G}(u)$ does not include u itself. We then write $N_{G}[u]=N_{G}(u) \cup\{u\}$. For a subset $V^{\prime} \subseteq V(G)$, we denote by $G\left[V^{\prime}\right]$ the subgraph of G induced by V^{\prime}. For more notations and terminologies, we refer the reader to the book [1].

A k-coloring of G is an assignment of k colors to $V(G)$ such that no two adjacent vertices are assigned the same color. Let f be a k-coloring of a graph G, and H be a subgraph of G. We denote by $f(H)$ the set of colors assigned

[^0]to $V(H)$ under f. For a cycle C of G, if $|f(C)|=2$, then we call C a bichromatic cycle of f, or we say f contains bichromatic cycle C. If f does not contain any bichromatic cycle, then we call f an acyclic k-coloring of G. The acyclic chromatic number $A(G)$ of a graph G is the least number of colors needed in any acyclic coloring of G. Bounds on $A(G)$ in terms of the maximum degree $\Delta(G)$ of G include the following: $A(G) \leq 4$ if $\Delta(G)=3$ [13], $A(G) \leq 5$ if $\Delta(G)=4$ [9], $A(G) \leq 7$ if $\Delta(G)=5$ [16], which improves the result that $A(G) \leq 9$ if $\Delta(G)=5$ [11], and $A(G) \leq 11$ if $\Delta(G)=6$ [14].

The acyclic colorings was first studied by Grünbaum [13], who wrote a long paper to investigate the acyclic colorings of planar graphs. He proved that every planar graph is acyclically 9 -colorable, and conjectured that five colors are sufficient. Sure enough, three years later, Borodin [2] (also see [3]) gave a proof of Grünbaum's conjecture. Indeed, five is the best possible as there exist planar graphs without acyclic 4-colorings [13]. In 1973, Wegner [21] constructed a 4-colorable planar graph G, each 4-coloring of which possesses a cycle in every bichromatic subgraph. Afterwards Kostochka and Melnikov [15] showed that graphs with no acyclic 4-coloring can be found among 3-degenerated bipartite planar graphs.

The research on acyclically 4-colorable planar graphs always attracted much attentions. In 1999, Borodin, Kostochka, and Woodall [7] showed that planar graphs under the absence of 3 - and 4 -cycles are acyclically 4 -colorable; In 2006, Montassier, Raspaud, and Wang [19] proved that planar graphs, without $4-5-$, and 6 -cycles, or without $4-$, 5 -, and 7 -cycles, or without $4-$, $5-$, and intersecting 3 -cycles, are acyclically 4-colorable; In 2009, Chen and Raspaud [10] proved that if a planar graph G has no 4-, 5 -, and 8 -cycles, then G is acyclically 4 -colorable; Borodin $[4,5]$ showed that planar graphs without 4 - and 6 -cycles, or without 4- and 5-cycles are acyclically 4-colorable; Recently [6], Borodin proved that planar graphs without 4 - and 5-cycles are acyclically 4-choosable.

A planar graph G is called a triangulation if adding any edge to G results in a nonplanar graph. The dual graph G^{*} of a plane graph G is a graph that has a vertex corresponding to each face of G, and an edge joining two neighboring faces for each edge in G. It is wellknown that the dual graphs of triangulations are planar cubic 3-connected graphs. Observe that G is an acyclically 4-colorable triangulation if and only if its dual graph G^{*} contains three Hamilton cycles such that each edges of G^{*} is just contained in two of them. Since the problem of deciding whether a planar cubic 3-connected graph contains a Hamilton cycle is NP-complete [12], we can deduce that the problem of deciding whether a triangulation is acyclically 4 -colorable is NP-complete. In addition, it has been shown that the acyclic 4-colorability is NP-complete for planar graphs with maximum degree $5,6,7$, and 8 respectively and for planar bipartite graphs with the maximum degree 8 [18,17,20].

As far as we know, there are no papers investigating the acyclic 4-colorability of triangulations. Because there exist triangulations without acyclic 4 -colorings, we are interested in studying what the characteristics and structures of acyclically 4 -colorable triangulations are. In this paper, we prove that an acyclic 4-colorable triangulation G with $\delta(G) \geq 4$ contains at least four odd-vertices. Furthermore, for an acyclic 4-colorable triangulation with minimum degree 4 and exactly four odd-vertices, we show that the subgraph induced by its four odd-vertices is triangle-free and claw-free.

2. Main results

A k-cycle C is a cycle of length k. If k is even, we call C an even cycle, otherwise, an odd cycle. A cycle is called separating k-cycle in a graph embedded on the plane if it is a k-cycle such that both the interior and the exterior contain one or more vertices. A n-wheel W_{n} (or simply wheel W) is a graph with $n+1$ vertices ($n \geq 3$), formed by connecting a single vertex (called the center of W_{n}) to all vertices of a n-cycle. A subgraph is called a k-wheel subgraph of a triangulation G if it is isomorphic to a k-wheel. Obviously, when G is 4-connected, it follows that any subgraph induced by a k-vertex and all of its neighbors is a k-wheel subgraph of G.

Let W be a 4 -wheel subgraph of G. The operation of contracting 4-wheel W on u, w of G, denoted by $\mathscr{D}_{W}^{u, w}(G)$, is identifying u, w and the center of W and then deleting re-
sulting parallel edges. We denote by $\zeta_{W}^{u, w}(G)$ the resulting graph by conducting operation $\mathscr{D}_{W}^{u, w}(G)$, and (u, w) the corresponding identified vertex in $\zeta_{W}^{u, w}(G)$. Clearly, when $N(u) \cap N(w) \subseteq N[v]$ and $d_{G}(x) \geq 5$ and $d_{G}(y) \geq 5$, it follows that $\zeta_{W}^{u, \bar{w}}(G)$ is still a triangulation, and

$$
\begin{align*}
d_{\zeta_{W}^{u, w}(G)}((u, w)) & =d_{G}(u)+d_{G}(w)-4, \\
d_{\zeta_{W}^{u, w}(G)}(x) & =d_{G}(x)-2, \\
d_{\zeta_{W}^{u, w}(G)}(y) & =d_{G}(y)-2, \tag{1}
\end{align*}
$$

where $\{x, y\}=N_{G}(v) \backslash\{u, w\}$.
Lemma 2.1. If G is a triangulation with a 4-vertex v and an acyclic 4-coloring f, then the following holds.
(1) $\left|f\left(N_{G}(v)\right)\right|=3$.
(2) There exists a pair of nonadjacent neighbors v_{1}, v_{3} of v receiving the same color, and the set of their common neighbors is $N_{G}[v] \backslash\left\{v_{1}, v_{3}\right\}$.
(3) The neighbors of v other than v_{1}, v_{3} receive the different colors and these two vertices are of degree at least 5 .

Proof. (1) immediately follows from the acyclicality of f. So, $N_{G}(v)$ contains two nonadjacent neighbors, v_{1}, v_{3} such that $f\left(v_{1}\right)=f\left(v_{3}\right)$. Let $\left\{v_{2}, v_{4}\right\}=N_{G}(v) \backslash\left\{v_{1}, v_{3}\right\}$. Then, $f\left(v_{2}\right) \neq f\left(v_{4}\right)$. Suppose that there exists a vertex $u \in$ $N\left(v_{1}\right) \cap N\left(v_{3}\right)$ but $u \notin\left\{v, v_{2}, v_{4}\right\}$, then either $v_{1} v_{2} v_{3} u v_{1}$, or $v_{1} v v_{3} u v_{1}$, or $v_{1} v_{4} v_{3} u v_{1}$ is a bichromatic cycle. This contradicts with f, and hence (2) holds. For (3), it can be directly deduced from (2).

If an acyclically 4 -colorable triangulation contains a 3 -vertex, then the resulting graph by deleting the 3 -vertex and its incident edges is still acyclically 4-colorable. Thus, in what follows we mainly consider acyclically 4 -colorable triangulations without 3 -vertices (i.e. with minimum degree 4), and use $\mathcal{T} 4$ to denote the class of such triangulations with exactly four odd-vertices. Further, for a graph $G \in \mathcal{T} 4$, we use $V^{4}(G)$ to denote the set of its four oddvertices of G. According to the Euler formula, one can readily check that every $G \in \mathcal{T} 4$ contains at least four 4 -vertices.

For a 4-vertex v in a graph $G \in \mathcal{T} 4$, if there exist a pair of nonadjacent vertices $u, w \in N_{G}(v)$ receiving the same color under an acyclic 4 -coloring of G, such that $\zeta_{W}^{u, w}(G)$ is also a graph in $\mathcal{T} 4$, then we refer to v as a contractible vertex of G. According to Lemma 2.1, we can see that for any triangulation $G \in \mathcal{T} 4, \zeta_{W}^{v_{1}, v_{2}}(G)$ is still acyclically 4 -colorable, where f is an arbitrary acyclic 4 -coloring of G, v is a 4-vertex, and $v_{1}, v_{2} \in N_{G}(v)$ satisfying $f\left(v_{1}\right)=f\left(v_{2}\right)$. Moreover, let $\left\{v_{3}, v_{4}\right\}=N_{G}(v) \backslash\left\{v_{1}, v_{2}\right\}$. If $d_{G}\left(v_{3}\right) \geq 6$ and $d_{G}\left(v_{4}\right) \geq 6$, then $\delta\left(\zeta_{W}^{v_{1}, v_{2}}(G)\right) \geq 4$ and v is a contractible vertex.

Theorem 2.2. Every acyclically 4-colorable triangulation G with $\delta(G) \geq 4$ contains at least four odd-vertices.

Proof. It suffices to consider $\delta(G)=4$ because G contains at least twelve 5 -vertices when $\delta(G)=5$ by the Euler formula.

If the conclusion fails to hold when $\delta(G)=4$, let G^{\prime} be a counterexample on the fewest vertices to the the-

https://daneshyari.com/en/article/427035

Download Persian Version:

https://daneshyari.com/article/427035

Daneshyari.com

[^0]: * Corresponding author at: School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China.

 E-mail address: jxu@pku.edu.cn (J. Xu).

