
Information Processing Letters 116 (2016) 409–415

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Verifying safety properties of a nonlinear control by 

interactive theorem proving with the Prototype Verification 

System

Cinzia Bernardeschi, Andrea Domenici ∗

University of Pisa, Dept. of Information Engineering, Largo Lucio Lazzarino 1, 56122 Pisa, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 August 2015
Received in revised form 16 December 2015
Accepted 8 February 2016
Available online 9 February 2016
Communicated by L. Viganò

Keywords:
Formal Methods
Theorem Proving
Verification
Nonlinear Control
Prototype Verification System

Interactive, or computer-assisted, theorem proving is the verification of statements in a 
formal system, where the proof is developed by a logician who chooses the appropriate 
inference steps, in turn executed by an automatic theorem prover. In this paper, interactive 
theorem proving is used to verify safety properties of a nonlinear (hybrid) control system.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many technical systems fall in the class of hybrid sys-
tems, i.e., nonlinear systems having both analog and digital 
components. Such systems are typically composed of an 
analog plant, described by linear or nonlinear equations, 
and a digital control, intrinsically nonlinear. In industrial 
practice, hybrid systems are usually analyzed by simu-
lation. An executable model of the system is built with 
graphical block-based languages such as those offered by 
the Simulink (TM), Scilab, or ScicosLab environments [1,2], 
or textual languages such as Modelica [3] or CIF [4], or a 
combination of the two, and the model is executed to sim-
ulate the system under various conditions.

While simulation is a mainstay of system development 
and is a necessary tool for validation, it cannot provide 
developers with the confidence afforded by formal veri-
fication. Formal verification of nonlinear systems may be 

* Corresponding author. Tel.: +39 050 2217674; fax: +39 050 2217600.
E-mail address: andrea.domenici@ing.unipi.it (A. Domenici).

difficult, but automatic or semiautomatic tools can provide 
valuable support to this task.

Schupp et al. [5] recently published an overview of hy-
brid systems verification, with short outlines of tools and 
techniques for reachability analysis, examples of bench-
mark problems, and current challenges. A survey of works 
on formal verification of hybrid systems was published by 
Alur [6], who identifies some broad areas of research, in-
cluding symbolic reachability analysis and deductive verifica-
tion.

In the area of symbolic reachability analysis, research is 
focused on algorithms to compute or approximate a sys-
tem’s reach(ability) set, i.e., the set of states reachable from 
any of the admissible initial states, with the goal of veri-
fying whether the set contains unsafe states. For example, 
Tiwari and Khanna [7] propose techniques to approximate 
reach sets for different classes of hybrid automata, based 
on qualitative abstraction [8], which in turns relies on 
model checking. Model checking is also used by Cimatti et 
al. [9], who implement a quantifier-free encoding of hybrid 
automata with the NuSMV [10] model checker.

http://dx.doi.org/10.1016/j.ipl.2016.02.001
0020-0190/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2016.02.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:andrea.domenici@ing.unipi.it
http://dx.doi.org/10.1016/j.ipl.2016.02.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.02.001&domain=pdf


410 C. Bernardeschi, A. Domenici / Information Processing Letters 116 (2016) 409–415

Many tools have been developed to support the anal-
ysis of hybrid systems, including UPPAAL [11] for timed 
automata, HybridSAL [12] based on the SAL [13] model 
checker, ARIADNE [14], and HSOLVER [15]. In particu-
lar, ARIADNE has been used for nonlinear hybrid system 
verification based on an assume-guarantee method, and 
HSOLVER has been applied to safety verification with con-
straint propagation and abstraction refinement.

In the area of deductive verification, KeYmaera [16]
is an interactive theorem-proving environment based on 
sequent calculus and tailored to the differential dynamic 
logic dL [17]. KeYmaera has been developed specifically 
for hybrid systems, unlike other general-purpose theorem 
provers, such as Coq [18], based on the calculus of induc-
tive constructions and intuitionistic logic, and Isabelle [19], 
based on higher-order logic and functional programming.

In this paper, the PVS (Prototype Verification System) 
theorem prover is used to prove basic properties of a typi-
cal case study, the level control of a storage tank. This sim-
ple example shows that a higher-order theorem-proving 
tool can support developers in expressing and verifying a 
natural line of reasoning rooted on domain knowledge.

This paper is structured as follows: In Section 2, essen-
tial information on the PVS language and deduction system 
is provided; Section 3 introduces the case study; Section 4
describes the formalization of the case study and how the 
PVS is used to prove that certain constraints guarantee safe 
operation of the system; Section 5 discusses the case study 
and relates it to the general topic of hybrid system analy-
sis; and Section 6 concludes the paper.

2. The Prototype Verification System

The PVS is an interactive theorem prover developed at 
Computer Science Laboratory, SRI International, by S. Owre, 
N. Shankar, J. Rushby, and others [20,21] and it has been 
applied to many fields, including formal verification of 
hardware and safety-critical systems [22–24]. Its formal 
system is based on sequent calculus [25–27], together with 
a typed higher-order language.

A PVS user writes a theory in the PVS language [28], 
then uses the PVS theorem proving environment [29] to 
prove selected formulas of the theory.

2.1. The PVS language

In a PVS theory, one can declare types, constants, vari-
ables, and formulas. The PVS type system is very flexible, 
providing users with standard mathematical types (e.g., 
naturals, integers, and reals) and allowing them to define 
uninterpreted types, to build record and tuple types sim-
ilar to records in programming languages, and to define 
function types (e.g., “the set of functions from integers to re-
als”). In particular, functions returning Boolean values are 
called predicates. It is also possible to define subtypes by 
adding constraints to previously defined types. One can 
then declare constants and variables (including function 
constants and variables) and write formulas. A formula is 
a named logical statement composed of atomic formulas, 
logical connectives, and quantifiers.

Each formula is identified by a name and qualified by a 
keyword specifying if the formula is an axiom or not. The 
PVS prover takes axioms as proved statements, whereas 
it requires the other formulas to be proved. Axioms are 
recognized by the AXIOM keyword, the other formulas by 
such keywords as LEMMA, THEOREM, or other synonyms. 
Examples of PVS declarations are found in Section 4.

The PVS environment includes a large number of pre-
packaged fundamental theories, called the prelude [30]. An 
even larger number of theories, covering, e.g., mathemat-
ical analysis, algebra, or probability, is available in addi-
tional libraries, such as the NASA Langley PVS Library [31,
32].

2.2. The PVS deduction system

As previously mentioned, PVS is based on the sequent 
calculus. A sequent is an expression with this structure:

A1, A2, . . . , Am � B1, B2, . . . , Bn

where the Ai ’s are the antecedents and the Bi ’s are the 
consequents. The ‘�’ symbol is called a turnstile and may 
be read as “yields”. Each antecedent or consequent is a 
formula built with atomic formulas, connectives, and quan-
tifiers.

A sequent is true if any formula occurs both as an an-
tecedent and as a consequent, or any antecedent is false, or 
any consequent is true. Proving a formula (a goal) consists 
in expressing it as a sequent without antecedents and ap-
plying inference rules until one of the previous conditions 
for truth is met.

The PVS prover presents the user with the initial se-
quent corresponding to the formula to be proved. The user 
applies a series of inference steps, invoking a prover com-
mand at each step. A prover command may result in the 
application of a single inference rule of the sequent calcu-
lus, or a combination of several rules, possibly chosen and 
iterated according to some pre-packaged strategy. Some of 
the manipulations made available by the PVS prover in-
clude: (i) Instantiating variables, in particular by introducing 
fresh Skolem constants; (ii) decomposing formulas into sim-
pler ones; (iii) introducing lemmas; and (iv) applying substi-
tutions. Some commands transform the current goal into 
two or more subgoals: For example, the split command 
transforms a goal of the form A ⇒ B � C into two subgoals 
B � C and � A, C .

Usually, a PVS user directs the proof by making in-
formed choices about the main steps (such as introduc-
ing the appropriate lemmas) and lets the prover deal 
with low-level, tedious and error-prone manipulations. The 
prover, however, supports also high-level proof strategies, 
such as induction.

3. Water level control

The problem of controlling the level of a liquid (say, wa-
ter) in a tank is a well-known case study in control theory. 
There are several versions of this problem, and in this pa-
per the one presented in [33] is considered. The problem 
is stated as follows:



Download English Version:

https://daneshyari.com/en/article/427036

Download Persian Version:

https://daneshyari.com/article/427036

Daneshyari.com

https://daneshyari.com/en/article/427036
https://daneshyari.com/article/427036
https://daneshyari.com

