
Information Processing Letters 116 (2016) 419–422

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A randomized algorithm for long directed cycle ✩

Meirav Zehavi

Department of Computer Science, Tel Aviv University, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 November 2015
Received in revised form 20 February 2016
Accepted 20 February 2016
Available online 24 February 2016
Communicated by B. Doerr

Keywords:
Algorithms
Parameterized complexity
Long directed cycle
k-Path

Given a directed graph G and a parameter k, the Long Directed Cycle (LDC) problem asks
whether G contains a simple cycle on at least k vertices, while the k-Path problem asks
whether G contains a simple path on exactly k vertices. Given a deterministic (randomized)
algorithm for k-Path as a black box, which runs in time t(G, k), we prove that LDC

can be solved in deterministic time O ∗(max{t(G, 2k), 4k+o(k)}) or in randomized time
O ∗(max{t(G, 2k), 4k}). In particular, we get that LDC can be solved in randomized time
O ∗(4k).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We study the Long Directed Cycle (LDC) problem.
Given a directed graph G = (V , E) and a parameter k, it
asks whether G contains a simple cycle on at least k ver-
tices. At first glance, this problem seems quite different
from the well-known k-Path problem, which asks whether
G contains a simple path on exactly k vertices: while
k-Path seeks a solution whose size is exactly k, the size
of a solution to LDC can be as large as |V |. Indeed, in the
context of LDC, Fomin et al. [1] note that “color-coding,
and other techniques applicable to k-Path do not seem to
work here.”

In this paper, we show that an algorithm for k-Path

can be used as a black box to solve LDC efficiently. More
precisely, suppose that we are given a deterministic (ran-
domized) algorithm PathAlg that uses t(G, k) time and
s(G, k) space, and decides whether G contains a simple
path on exactly k vertices directed from v to u for some
given vertices v, u ∈ V .1 Then, we prove that LDC can

✩ Abbreviations: Long Directed Cycle (LDC).
E-mail address: meizeh@post.tau.ac.il.

1 Known algorithms for k-Path handle the condition relating to the ver-
tices v and u.

be solved in deterministic time O ∗(max{t(G, 2k), 4k+o(k)})
and O ∗(max{s(G, k), 4k+o(k)}) space (if PathAlg is deter-
ministic), or in randomized time O ∗(max{t(G, 2k), 4k}) and
O ∗(s(G, k)) space (if PathAlg is randomized).2 Somewhat
surprisingly, we show that cases that cannot be efficiently
handled by calling an algorithm for k-Path, can be effi-
ciently handled by merely using a combination of a simple
partitioning step and Breadth-First Search (BFS).

The first parameterized algorithm for LDC, due to
Gabow and Nie [2], runs in time O ∗(kO (k)). Then, Fomin
et al. [1] gave a deterministic parameterized algorithm
for LDC that runs in time O ∗(8k+o(k)) using exponential
space. Recently, Fomin et al. [3] and Shachnai et al. [4]
modified the algorithm in [1] to run in deterministic time
O ∗(6.75k+o(k)) using exponential space. These algorithms
are also presented in the new monograph [5]. It is known
that k-Path can be solved in randomized time O ∗(2k) and
polynomial space [6], and deterministic time O ∗(2.59606k)

and exponential space [7]. Thus, we immediately obtain
that LDC can be solved in randomized time O ∗(4k) and
polynomial space, and deterministic time O ∗(6.73953k)

and exponential space. We briefly mention that the undi-
rected variant of LDC is the special case of LDC where

2 The O ∗ notation hides factors polynomial in the input size.

http://dx.doi.org/10.1016/j.ipl.2016.02.005
0020-0190/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2016.02.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:meizeh@post.tau.ac.il
http://dx.doi.org/10.1016/j.ipl.2016.02.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.02.005&domain=pdf

420 M. Zehavi / Information Processing Letters 116 (2016) 419–422

Algorithm 1 PolyAlg(G = (V , E), k, L, R).
1: for all v ∈ L and u ∈ L \ {v} do
2: Use BFS to find a simple path P = (V P , E P) from v to u in G[L]

that minimizes |V P |.
3: if |V P | �= k or the path P does not exist then
3: Skip the rest of this iteration.
4: end if
5: Use BFS to find a simple path P ′ = (V ′

P , E ′
P) from u to v in G[V \

(V P \ {v, u})] that minimizes |V ′
P |.

6: if the path P ′ exists then
7: Accept.
8: end if
9: end for

10: Reject.

for every edge (v, u) ∈ E , it holds that (u, v) ∈ E . Gabow
and Nie [2] note that “the directed case is believed to be
harder”. Indeed, the first parameterized algorithm for the
undirected variant has already been given in [8]. Further
information can be found in [2].

In the following sections, given a graph G = (V , E) and
a set U ⊆ V , we let G[U] denote the subgraph of G in-
duced by U .

2. Finding large partitioned solutions in polynomial time

We say that an instance (G, k) of LDC seems difficult if
G does not contain a directed cycle on � vertices for any
� ∈ {k, k + 1, . . . , 2k}. Roughly speaking, given such an in-
stance, we are forced to determine whether G contains a
large solution. This case, as noted in [2] and [1], seems
to be the core of difficulty of LDC. We show, somewhat
surprisingly, that under certain conditions, this case can
be solved in polynomial time. More precisely, this section
proves the correctness of the following lemma.

Lemma 1. Let (G, k) be an instance of LDC, and let (L, R) be
a partition of V . Then, there is a deterministic polynomial-time
algorithm, PolyAlg, which satisfies the following conditions.3

• If (G, k) seems difficult, and G contains a simple cycle v1 →
v2 → . . . → vt → v1 such that t > 2k, v1, v2, . . . , vk ∈ L
and vk+1, vk+2, . . . , v2k ∈ R, PolyAlg accepts.

• If G does not contain a simple cycle on at least k vertices,
PolyAlg rejects.

Proof. The pseudocode of PolyAlg is given in Algorithm 1.
Clearly, if the algorithm accepts, there exist two distinct
vertices v and u such that G contains two simple inter-
nally vertex disjoint paths, P = (V P , E P) (from v to u) and
P ′ = (V ′

P , E ′
P) (from u to v), where |V P | = k. In this case,

G contains a simple cycle, which consists of these paths,
on at least k vertices. Thus, the second item is correct.

Now, we turn to prove the first item. To this end, sup-
pose that the condition of this item is true. Then, we let
C = v1 → v2 → . . . → vt → v1 be a simple cycle in G such
that t > 2k, v1, v2, . . . , vk ∈ L and vk+1, vk+2, . . . , v2k ∈ R ,
which minimizes t . We need the following observations.

3 In cases not covered by these conditions, PolyAlg can either accept or
reject.

Observation 1. The number of vertices on the shortest path
from v1 to vk in G[L] is exactly k.

Proof. We let P = (V P , E P) denote a path from v1 to vk
in G[L] that minimizes |V P |. By the existence of C , such
a path P exists and satisfies |V P | ≤ k. Since V P ⊆ L and
vk+1, vk+2, . . . , v2k ∈ R , it holds that vk+1, vk+2, . . . , v2k /∈
V P . Now, consider the (not necessarily simple) path ˜P =
(V

˜P , E
˜P) from v2k+1 to vk obtained by concatenating P

to the simple path from v2k+1 to v1 that is a sub-
path of C . Observe that |V

˜P | = (t − 2k) + |V P | and that
vk+1, vk+2, . . . , v2k /∈ V

˜P . Thus, there exists a simple path
from v2k+1 to vk on at most (t − 2k) + |V P | vertices that
avoids vk+1, vk+2, . . . , v2k . Together with the simple sub-
path from vk to v2k+1 of C , we obtain a simple cycle on
(t − 2k) + |V P | + k = t − k + |V P | vertices. If |V P | < k, this
cycle contains less than t vertices (but more than 2k ver-
tices, since it contains vk+1, vk+2, . . . , v2k and (G, k) seems
difficult), contradicting the choice of C . Thus, we conclude
that |V P | = k. �
Observation 2. Let P = (V P , E P) be a simple path from v1 to
vk in G[L] such that |V P | = k. Then, G[V \ (V P \ {v1, vk})]
contains a path from vk to v1 .

Proof. If V P ∩ {vk+1, vk+2, . . . , vt} = ∅, the claim is clearly
true, since then vk → vk+1 → . . . → vt → v1 is a path
in G[V \ (V P \ {v1, vk})]. Suppose, by way of contradic-
tion, that V P ∩ {vk+1, vk+2, . . . , vt} �= ∅. Since V P ⊆ L and
vk+1, vk+2, . . . , v2k ∈ R , it holds that vk+1, vk+2, . . . , v2k /∈
V P and V P ∩ {v2k+1, vk+2, . . . , vt} �= ∅. Now, consider the
non-simple path ˜P = (V

˜P , E
˜P) from v2k+1 to vk obtained

by concatenating P to the simple path from v2k+1 to v1
that is a subpath of C . Observe that |V

˜P | = t − k and that
vk+1, vk+2, . . . , v2k /∈ V

˜P . Thus, there exists a simple path
from v2k+1 to vk on at most t − k − 1 vertices that avoids
vk+1, vk+2, . . . , v2k . Together with the simple subpath from
vk to v2k+1 of C , we obtain a simple cycle on at most t −1
vertices. This cycle contains less than t vertices (but more
than 2k vertices, since it contains vk+1, vk+2, . . . , v2k and
(G, k) seems difficult), contradicting the choice of C . �

Consider the iteration of Step 1 that corresponds to
v = v1 and u = vk . The first observation implies that the
condition of Step 3 is false. Next, the second observation
implies that the condition of Step 6 is true, and therefore
PolyAlg accepts. �
3. Computing the sets L and R

In this section we observe that the computation of the
sets L and R can merely rely on a simple partitioning step
that is based on color coding [9]. To this end, we need the
following definition and known result.

Definition 1. Let F be a set of functions f : {1, 2, . . . , n} →
{0, 1}. We say that F is an (n, t)-universal set if, for every
subset I ⊆ {1, 2, . . . , n} of size t and every function f ′ : I →
{0, 1}, there is a function f ∈ F such that, for all i ∈ I ,
f (i) = f ′(i).

Download English Version:

https://daneshyari.com/en/article/427038

Download Persian Version:

https://daneshyari.com/article/427038

Daneshyari.com

https://daneshyari.com/en/article/427038
https://daneshyari.com/article/427038
https://daneshyari.com

