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This article proves for the first time the strong advantages of black-box optimizers with 
storage size two versus one. On the one hand we illustrate for some classes of functions 
that the black-box complexity for memory size one is exponential. On the other hand these 
classes are efficiently optimized by black-box algorithms with memory size two and even 
by simple genetic algorithms.
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1. Introduction

The influence of memory usage is discussed since the 
first considerations of black-box complexity [4]. The black-
box complexity of a class of functions is basically the min-
imal number of queries of function values until an opti-
mum of any function of the considered class is queried. 
The function f is unknown with exception of all elements 
of the search space x1, . . . , xt−1 queried so far, t ≥ 1, and 
their function values. For the most general black-box al-
gorithms the (randomized) selection of xt is based on 
(x1, f (x1)), . . . , (xt−1, f (xt−1)). Restrictions on the memory 
size are in the focus of this article. Namely, only a subset 
of all elements and their function values queried so far is 
stored. This subset of a fixed size provides the basis for 
the selection of the next element as well as for the next 
subset. Since many optimizers like evolutionary algorithms 
are memory-restricted the respective black-box algorithms 
and complexity are of particular interest. Other restrictions 
such as rank-based [2], elitist [3], or unbiased [6] black-box 
algorithms are not in the focus of this article. The black-
box complexity states the difficulty of a problem to be 
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solved by general-purpose optimizers featuring some re-
strictions or not.

On the one hand for some classes of functions ef-
ficient black-box algorithms with restricted memory are 
presented. E.g., [1] also proved upper bounds of order 
n/ log n for memory size one on the so-called function 
class onemax on strings of n bits. And lower bounds of 
order n/ logn apply even for unrestricted memory. Simple 
evolutionary algorithms are only a bit less efficient, typi-
cally with bounds of order n log n.

On the other hand for some classes of functions large 
lower bounds are presented. But these results are all inde-
pendent of memory size, namely applicable to unrestricted 
storage. E.g., [5] also proved exponential lower and up-
per bounds on a function class realjump. These results are 
based on similar bounds for the so-called function class 
needle.

The advantages and disadvantages of memory for spe-
cific evolutionary algorithms on natural and non-natural 
functions are already widely analyzed, see also [7]. In 
many situations randomized search heuristics with mem-
ory size one are actually successful. Because of this we an-
swer a major question of Droste, Jansen, and Wegener [4]. 
For some classes of functions we prove that their memory-
less black-box complexity is very large, i.e., optimizers with 
populations of one element are considered. But with stor-
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Algorithm 1 Black-box algorithm with memory size k ≥ 0.
Let the multiset P0 = ∅.
Step t ≥ 1. Depending on t and Pt−1, choose some probability distribution 
pt on S and create a random element xt ∈ S according to pt . Query f (xt ). 
Choose Pt ⊆ Pt−1 ∪ {(xt , f (xt ))} of size |Pt | ≤ k.

age (of size two) the black-box complexity becomes very 
small.

In Section 3 we prove the big gap in the efficiency for 
the memory-less situation versus the smallest memory-
restriction, i.e., populations of two elements. To achieve 
these results we investigate in Section 2 the degraded 
memory-restriction, i.e., populations of no elements at all. 
We finally extend our findings to generalizations of the 
already considered real royal road functions by [8]. In 
Section 4 they are examined in combination with simple 
genetic algorithms necessarily using operators combining 
two elements.

First we have to specify black-box algorithms and com-
plexity especially with respect to memory in Section 1.1. In 
Section 1.2 we recall the well-known methods for proofs of 
lower bounds. And to apply them we analyze in Section 1.3
the influences of memory-restrictions on the appearance of 
decision trees. Decision trees originally describe memory-
unrestricted black-box algorithms.

1.1. Black-box optimization and memory

We regard a black-box algorithm A on a function 
f : S → N for all f ∈ F of a class F . Let S and F be 
finite and without loss of generality we consider maxi-
mization of f . If k = 0 the algorithm is called degraded
as commented below. If k = 1 it is called memory-less. 
For 1 < k < ∞ it is called memory-restricted and memory-
unrestricted if k = ∞. And if pt is a deterministic dis-
tribution for all t , the algorithm is called deterministic. 
Otherwise it is called randomized. We call the multiset Pt

the population and xt the offspring.
For the upper bounds in this article we always define 

even deterministic algorithms and even without consider-
ing the step counter t . However, most types of optimizers 
like evolutionary algorithms do not have access to t . And 
the lack of access to t strongly challenges some proofs of 
upper bounds, see also [1].

Let T ( f , A) denote the expected number of steps of 
A that are needed until the function value of an element 
x ∈ S with f (x) ≥ f (y) for all y ∈ S is queried, namely an 
optimum. With T (F , A) := max{T ( f , A) | f ∈ F } we have 
defined the worst-case expected number of steps of A con-
cerning F . And with T (F ) := min{T (F , A) | A} the black-box 
complexity of F is defined, namely the number of function 
evaluations necessary to find the maximum of any mem-
ber of F .

1.2. Methods for proofs of lower bounds

For lower bounds on black-box complexity we do not 
apply any restrictions. For the proofs we define a maxi-
mal number of function evaluations tmax and we assume 
that latest at step tmax an optimum is evaluated. This 
does not increase the number of function evaluations. For 

the memory-unrestricted situation tmax is limited by |S|, 
because multiple queries of the same element are easily 
avoided.

We observe that the set of black-box algorithms is fi-
nite, if the search space S and the class F of functions 
are finite. And every randomized algorithm is equivalent 
to a probability distribution on deterministic algorithms. 
The dependency also on t for the choice of the offspring 
is essential, because otherwise for the deterministic algo-
rithms the offspring is necessarily the same for the same 
population and for all steps. This is unrepresentable for 
randomized situations as discussed in detail by [3].

Hence, it is possible to apply the method for proofs of 
lower bounds known as the minimax principle by Yao [10].

Theorem 1 (Yao’s minimax principle). Let F be a finite class of 
functions on a finite search space S, and let A be a finite set 
of deterministic algorithms on the set F . For every probability 
distribution p on F and every probability distribution q on A it 
holds minA∈A T ( f p, A) ≤ max f ∈F T ( f , Aq).

1.3. Ordered directed acyclic decision graphs

A deterministic memory-unrestricted black-box algo-
rithm is equivalently expressed by an ordered directed 
decision tree [9]. The root at level t = 1 represents the 
population ∅ and offspring x1. Let v be a node at level 
t ≥ 1 representing the population after step t − 1 and off-
spring xt . There is a directed edge for each potentially ob-
tained f (xt) from v to a node at level t + 1 representing 
the population after step t . Only a subset F (v) ⊆ F de-
scribes the functions which are consistent with all queries 
and answers on a path from the root to v . At node v it is 
sufficient to consider all f (xt), where f ∈ F (v). For each 
function f the algorithm A follows a unique path and at 
level T ( f , A) an optimal element is queried.

In the memory-unrestricted situation the population 
consists of all offspring on the unique path from the root 
to v . And it therefore forms an ordered directed tree. In 
memory-restricted situations, as well as in degraded and 
memory-less situations, the population consists of a sub-
set of all offspring. And two nodes at level t representing 
different populations or offspring may therefore result in 
the same node at level t + 1. Thus, there may be more 
than one path from the root to v . And the tree collapses 
to an ordered directed acyclic graph in memory-restricted, 
memory-less, and degraded situations.

2. Degraded vs. memory-less black-box algorithms

A class of functions is defined in the following, where 
on the one hand each degraded black-box algorithm is in-
efficient and on the other hand an efficient memory-less 
algorithm exists. We first look at the class N� , � ∈ N

>0, 
of so-called needle (in the haystack) functions. The class 
N� consists of all functions N�,i , i ∈ {1, . . . , �} =: S� , where 
N�,i(i) := 1 (optimum) and N�,i(x) := 0, if x 
= i. Even for 
unrestricted-memory the black-box complexity of N� is 
known to equal (� +1)/2 which is proved by [4]. All black-
box algorithms for N� are inefficient, because there is no 
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