
Information Processing Letters 116 (2016) 245–251

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On the greedy algorithm for the Shortest Common

Superstring problem with reversals

Gabriele Fici a,∗, Tomasz Kociumaka b, Jakub Radoszewski b,c, Wojciech Rytter b,
Tomasz Waleń b

a Dipartimento di Matematica e Informatica, Università di Palermo, Italy
b Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland
c Newton International Fellow at Department of Informatics, King’s College London, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 July 2015
Received in revised form 26 November 2015
Accepted 26 November 2015
Available online 2 December 2015
Communicated by Jef Wijsen

Keywords:
Analysis of algorithms
Shortest Common Superstring
Reversal
Greedy algorithm

We study a variation of the classical Shortest Common Superstring (SCS) problem in which
a shortest superstring of a finite set of strings S is sought containing as a factor every string
of S or its reversal. We call this problem Shortest Common Superstring with Reversals
(SCS-R). This problem has been introduced by Jiang et al. [9], who designed a greedy-
like algorithm with length approximation ratio 4. In this paper, we show that a natural
adaptation of the classical greedy algorithm for SCS has (optimal) compression ratio 1

2 , i.e.,
the sum of the overlaps in the output string is at least half the sum of the overlaps in an
optimal solution. We also provide a linear-time implementation of our algorithm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Shortest Common Superstring (SCS) problem is a
classical combinatorial problem on strings with applica-
tions in many domains, e.g. DNA fragment assembly, data
compression, etc. (see [6] for a recent survey). It consists,
given a finite set of strings S over an alphabet �, in find-
ing a shortest string containing as factors (substrings) all
the strings in S . The decision version of the problem is
known to be NP-complete [13,5,4], even under several re-
strictions on the structure of S (see again [6]). However, a
particularly simple greedy algorithm introduced by Gallant
in his Ph.D. thesis [5] is widely used in applications since
it has very good performance in practice (see for instance

* Corresponding author.
E-mail addresses: gabriele.fici@unipa.it (G. Fici),

kociumaka@mimuw.edu.pl (T. Kociumaka), jrad@mimuw.edu.pl
(J. Radoszewski), rytter@mimuw.edu.pl (W. Rytter), walen@mimuw.edu.pl
(T. Waleń).

[12] and references therein). It consists in repetitively re-
placing a pair of strings with maximum overlap with
the string obtained by overlapping the two strings, until
one string remains. The greedy algorithm can be imple-
mented using Aho–Corasick automaton in O(n) random-
ized time (with hashing on the symbols of the alphabet)
or O(n min(log m, log |�|)) deterministic time (see [17]),
where n is the sum of the lengths of the strings in S and
m its cardinality.

The approximation of the greedy algorithm is usually
measured in two different ways: one consists in taking into
account the approximation ratio (also known as the length
ratio) kg/kmin , where kg is the length of the output string
of greedy and kmin the length of a shortest superstring, the
other consists in taking into account the compression ratio
(n − kg)/(n − kmin).

For the approximation ratio, Turner [16] proved that
there is no constant c < 2 such that kg/kmin ≤ c. The
greedy conjecture states that this approximation ratio is in
fact 2 [1]. The best bound currently known is 3.5 due to

http://dx.doi.org/10.1016/j.ipl.2015.11.015
0020-0190/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2015.11.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:gabriele.fici@unipa.it
mailto:kociumaka@mimuw.edu.pl
mailto:jrad@mimuw.edu.pl
mailto:rytter@mimuw.edu.pl
mailto:walen@mimuw.edu.pl
http://dx.doi.org/10.1016/j.ipl.2015.11.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.11.015&domain=pdf

246 G. Fici et al. / Information Processing Letters 116 (2016) 245–251

Kaplan and Shafrir [10]. Algorithms with better approxi-
mation ratio are known; the best one is due to Mucha,
with an approximation ratio of 2 11

23 [14].
For the compression ratio, Tarhio and Ukkonen [15]

proved that (n −kg)/(n −kmin) ≥ 1
2 and this bound is tight,

since it is achieved for the set S = {abh, bha, bh+1} when
greedy makes the first choice merging the first two strings
together.

Let us formally state the SCS problem:

Shortest Common Superstring (SCS)

Input: strings S = {s1, . . . , sm} of total length n.
Output: a shortest string u that contains si for each
i = 1, . . . , m as a factor.

Several variations of SCS have been considered in liter-
ature. For example, shortest common superstring problem
with reverse complements was considered in [11]. In this
setting the alphabet is � = {a,t,g,c} and the comple-
ment of a string s is s̄R , where ¯ is defined by ā = t,
t̄= a, ḡ= c, c̄= g, and t R denotes the reversal of t , that
is the string obtained reading t backwards. In particular,
this problem was shown to be NP-complete.

Other variations of the SCS problem can be found in [8,
3,7,2].

In this paper, we address the problem of searching for
a string u of minimal length such that for every si ∈ S , u
contains as a factor si or its reversal sR

i .

Shortest Common Superstring with Reversals (SCS-R)

Input: strings S = {s1, . . . , sm} of total length n.
Output: a shortest string u that contains for each
i = 1, . . . , m at least one of the strings si or sR

i as a
factor.

For example, if S = {aabb, aaac, abbb}, then a solution of
SCS-R for S is caaabbb. Notice that a shortest superstring
with reversals can be much shorter than a classical short-
est superstring. An extremal example is given by an input
set of the form S = {abh, cbh}.

The SCS-R problem was already considered by Jiang et
al. [9], who observed (not giving any proof) that the prob-
lem is still NP-hard. We provide a proof at the end of the
paper.

In [9], the authors proposed a greedy 4-approximation
algorithm. Here, we show that an adaptation of the clas-
sical greedy algorithm can be used for solving the SCS-R
problem with an (optimal) compression ratio 1

2 , and that
this algorithm can be implemented in linear time with re-
spect to the total size of the input set.

2. Basics and notation

Let � be a finite alphabet. We assume that � is linearly
sortable, e.g., � = {0, . . . , nO(1)}. The length of a string s
over � is denoted by |s|. The empty string, denoted by ε,
is the unique string of length zero. A string t occurs in a
string s if s = vtz for some strings v , z. In this case we say

that t is a factor of s. In particular, we say that t is a prefix
of s when v = ε and a suffix of s when z = ε. We say that
a factor t is proper if s �= t .

The string sR obtained by reading s from right to left
is called the reversal (or mirror image) of s. Given a set of
strings S = {s1, . . . , sm}, we define the set S R = {sR

1 , . . . , sR
m}

and the set S̃ = S ∪ S R .
Given two strings u, v , we define the (maximum) over-

lap between u and v , denoted by ov(u, v), as the length
of the longest suffix of u that is also a prefix of v . Some-
times we abuse the notation and also say that the suffix of
u of length ov(u, v) is the overlap of u and v . In general
ov(u, v) is not equal to ov(v, u), but it is readily verified
that ov(u, v) = ov(v R , uR). Additionally, we define pr(u, v)

as the prefix of u obtained by removing the suffix of length
ov(u, v) and denote u ⊗ v = pr(u, v)v . Note that the ⊗ op-
eration is in general neither symmetric nor associative.

A set of strings S is called factor-free if no string in S
is a factor of another string in S . We say that S is reverse-
factor-free if there are no distinct strings u, v ∈ S such that
u is a factor of v or v R .

Given a factor-free set of strings S = {s1, . . . , sm},
the SCS problem for S is known to be equivalent to
that of finding a maximum-weight Hamiltonian path π
in the overlap graph G S , which is a directed weighted
graph (S, E, w) with arcs E = {(si, s j) | i �= j} of weights
w(si, s j) = ov(si, s j) (cf. Theorem 2.3 in [15]). In this
setting, a path π = si1 , . . . , sik corresponds to a string
str(π) := pr(si1 , si2) · · ·pr(sik−1 , sik)sik . By ov(π) we denote
the total weight of arcs in the path π .

To accommodate reversals we extend the notion of an
overlap graph to G̃ S = (V , E, w). Here V = {vs : s ∈ S} ∪
{v R

s : s ∈ S} so every s ∈ S corresponds to exactly two ver-
tices, vs and v R

s . We define str(vs) = s and str(v R
s) = sR .

For a vertex α ∈ G̃ S we define αR as v R
s if α = vs for

some s or as vs if α = v R
s for some s. Note that str(αR) =

str(α)R . For every α, β ∈ V , α �= β , we introduce an arc
from α to β with weight ov(str(α), str(β)). For an arc
e = (α, β) we define eR = (βR , αR). Note that the weight
of eR is the same as the weight of e.

For paths π in G̃ S we also use the notions of str(π) and
ov(π). We say that a path π in G̃ S is semi-Hamiltonian if
π contains, for every vertex α ∈ G̃ S , exactly one of the two
vertices α, αR . Observe that a solution to SCS-R problem
for a reverse-factor-free set S corresponds to a maximum-
weight semi-Hamiltonian path π in the overlap graph G̃ S .

3. Greedy algorithm and its linear-time implementation

We define an auxiliary procedure Make-Reverse-Factor-

Free(S) that removes from S all strings u which are con-
tained as a factor in v or v R for some v ∈ S , v �= u. Note
that the resulting set S ′ is reverse-factor-free and, more-
over, a string is a common superstring with reversals for
S ′ if and only if it is a common superstring with reversals
for S .

Example 1. Let S = {ab, aaa, aab, baa}. Then Make-Reverse-

Factor-Free(S) produces S ′ = {aaa, aab} or S ′ = {aaa, baa}.

Download English Version:

https://daneshyari.com/en/article/427067

Download Persian Version:

https://daneshyari.com/article/427067

Daneshyari.com

https://daneshyari.com/en/article/427067
https://daneshyari.com/article/427067
https://daneshyari.com

