Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On the greedy algorithm for the Shortest Common Superstring problem with reversals

Gabriele Fici^{a,*}, Tomasz Kociumaka^b, Jakub Radoszewski^{b,c}, Wojciech Rytter^b, Tomasz Waleń^b

^a Dipartimento di Matematica e Informatica, Università di Palermo, Italy

^b Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

^c Newton International Fellow at Department of Informatics, King's College London, UK

ARTICLE INFO

Article history: Received 3 July 2015 Received in revised form 26 November 2015 Accepted 26 November 2015 Available online 2 December 2015 Communicated by Jef Wijsen

Keywords: Analysis of algorithms Shortest Common Superstring Reversal Greedy algorithm

1. Introduction

The Shortest Common Superstring (SCS) problem is a classical combinatorial problem on strings with applications in many domains, e.g. DNA fragment assembly, data compression, etc. (see [6] for a recent survey). It consists, given a finite set of strings *S* over an alphabet Σ , in finding a shortest string containing as factors (substrings) all the strings in *S*. The decision version of the problem is known to be NP-complete [13,5,4], even under several restrictions on the structure of *S* (see again [6]). However, a particularly simple greedy algorithm introduced by Gallant in his Ph.D. thesis [5] is widely used in applications since it has very good performance in practice (see for instance)

* Corresponding author.

E-mail addresses: gabriele.fici@unipa.it (G. Fici),

kociumaka@mimuw.edu.pl (T. Kociumaka), jrad@mimuw.edu.pl

ABSTRACT

We study a variation of the classical Shortest Common Superstring (SCS) problem in which a shortest superstring of a finite set of strings *S* is sought containing as a factor every string of *S* or its reversal. We call this problem Shortest Common Superstring with Reversals (SCS-R). This problem has been introduced by Jiang et al. [9], who designed a greedy-like algorithm with length approximation ratio 4. In this paper, we show that a natural adaptation of the classical greedy algorithm for SCS has (optimal) *compression ratio* $\frac{1}{2}$, i.e., the sum of the overlaps in the output string is at least half the sum of the overlaps in an optimal solution. We also provide a linear-time implementation of our algorithm.

© 2015 Elsevier B.V. All rights reserved.

[12] and references therein). It consists in repetitively replacing a pair of strings with maximum overlap with the string obtained by overlapping the two strings, until one string remains. The greedy algorithm can be implemented using Aho–Corasick automaton in $\mathcal{O}(n)$ randomized time (with hashing on the symbols of the alphabet) or $\mathcal{O}(n\min(\log m, \log |\Sigma|))$ deterministic time (see [17]), where *n* is the sum of the lengths of the strings in *S* and *m* its cardinality.

The approximation of the greedy algorithm is usually measured in two different ways: one consists in taking into account the *approximation ratio* (also known as the *length ratio*) k_g/k_{min} , where k_g is the length of the output string of greedy and k_{min} the length of a shortest superstring, the other consists in taking into account the *compression ratio* $(n - k_g)/(n - k_{min})$.

For the approximation ratio, Turner [16] proved that there is no constant c < 2 such that $k_g/k_{min} \le c$. The greedy conjecture states that this approximation ratio is in fact 2 [1]. The best bound currently known is 3.5 due to

⁽J. Radoszewski), rytter@mimuw.edu.pl (W. Rytter), walen@mimuw.edu.pl (T. Waleń).

Kaplan and Shafrir [10]. Algorithms with better approximation ratio are known; the best one is due to Mucha, with an approximation ratio of $2\frac{11}{23}$ [14].

For the compression ratio, Tarhio and Ukkonen [15] proved that $(n - k_g)/(n - k_{min}) \ge \frac{1}{2}$ and this bound is tight, since it is achieved for the set $S = \{ab^h, b^ha, b^{h+1}\}$ when greedy makes the first choice merging the first two strings together.

Let us formally state the SCS problem:

SHORTEST COMMON SUPERSTRING (SCS) **Input:** strings $S = \{s_1, ..., s_m\}$ of total length n. **Output:** a shortest string u that contains s_i for each i = 1, ..., m as a factor.

Several variations of SCS have been considered in literature. For example, shortest common superstring problem with reverse complements was considered in [11]. In this setting the alphabet is $\Sigma = \{a, t, g, c\}$ and the complement of a string *s* is \bar{s}^R , where $\bar{}$ is defined by $\bar{a} = t$, $\bar{t} = a$, $\bar{g} = c$, $\bar{c} = g$, and t^R denotes the reversal of *t*, that is the string obtained reading *t* backwards. In particular, this problem was shown to be NP-complete.

Other variations of the SCS problem can be found in [8, 3,7,2].

In this paper, we address the problem of searching for a string u of minimal length such that for every $s_i \in S$, u contains as a factor s_i or its reversal s_i^R .

SHORTEST COMMON SUPERSTRING WITH REVERSALS (*SCS-R*) **Input:** strings $S = \{s_1, ..., s_m\}$ of total length n. **Output:** a shortest string u that contains for each i = 1, ..., m at least one of the strings s_i or s_i^R as a factor.

For example, if $S = \{aabb, aaac, abbb\}$, then a solution of SCS-R for *S* is *caaabbb*. Notice that a shortest superstring with reversals can be much shorter than a classical shortest superstring. An extremal example is given by an input set of the form $S = \{ab^h, cb^h\}$.

The SCS-R problem was already considered by Jiang et al. [9], who observed (not giving any proof) that the problem is still NP-hard. We provide a proof at the end of the paper.

In [9], the authors proposed a greedy 4-approximation algorithm. Here, we show that an adaptation of the classical greedy algorithm can be used for solving the SCS-R problem with an (optimal) compression ratio $\frac{1}{2}$, and that this algorithm can be implemented in linear time with respect to the total size of the input set.

2. Basics and notation

Let Σ be a finite alphabet. We assume that Σ is linearly sortable, e.g., $\Sigma = \{0, ..., n^{\mathcal{O}^{(1)}}\}$. The *length* of a string *s* over Σ is denoted by |s|. The *empty string*, denoted by ε , is the unique string of length zero. A string *t* occurs in a string *s* if s = vtz for some strings *v*, *z*. In this case we say that *t* is a *factor* of *s*. In particular, we say that *t* is a *prefix* of *s* when $v = \varepsilon$ and a *suffix* of *s* when $z = \varepsilon$. We say that a factor *t* is proper if $s \neq t$.

The string s^R obtained by reading s from right to left is called the *reversal* (or *mirror image*) of s. Given a set of strings $S = \{s_1, \ldots, s_m\}$, we define the set $S^R = \{s_1^R, \ldots, s_m^R\}$ and the set $\tilde{S} = S \cup S^R$.

Given two strings u, v, we define the (maximum) overlap between u and v, denoted by ov(u, v), as the length of the longest suffix of u that is also a prefix of v. Sometimes we abuse the notation and also say that the suffix of u of length ov(u, v) is the overlap of u and v. In general ov(u, v) is not equal to ov(v, u), but it is readily verified that $ov(u, v) = ov(v^R, u^R)$. Additionally, we define pr(u, v)as the prefix of u obtained by removing the suffix of length ov(u, v) and denote $u \otimes v = pr(u, v)v$. Note that the \otimes operation is in general neither symmetric nor associative.

A set of strings *S* is called *factor-free* if no string in *S* is a factor of another string in *S*. We say that *S* is *reverse-factor-free* if there are no distinct strings $u, v \in S$ such that u is a factor of v or v^R .

Given a factor-free set of strings $S = \{s_1, \ldots, s_m\}$, the SCS problem for *S* is known to be equivalent to that of finding a maximum-weight Hamiltonian path π in the *overlap graph* G_S , which is a directed weighted graph (S, E, w) with arcs $E = \{(s_i, s_j) | i \neq j\}$ of weights $w(s_i, s_j) = ov(s_i, s_j)$ (cf. Theorem 2.3 in [15]). In this setting, a path $\pi = s_{i_1}, \ldots, s_{i_k}$ corresponds to a string $str(\pi) := pr(s_{i_1}, s_{i_2}) \cdots pr(s_{i_{k-1}}, s_{i_k})s_{i_k}$. By $ov(\pi)$ we denote the total weight of arcs in the path π .

To accommodate reversals we extend the notion of an overlap graph to $\widetilde{G}_S = (V, E, w)$. Here $V = \{v_s : s \in S\} \cup \{v_s^R : s \in S\}$ so every $s \in S$ corresponds to exactly two vertices, v_s and v_s^R . We define $str(v_s) = s$ and $str(v_s^R) = s^R$. For a vertex $\alpha \in \widetilde{G}_S$ we define α^R as v_s^R if $\alpha = v_s$ for some *s* or as v_s if $\alpha = v_s^R$ for some *s*. Note that $str(\alpha^R) = str(\alpha)^R$. For every $\alpha, \beta \in V, \alpha \neq \beta$, we introduce an arc from α to β with weight $ov(str(\alpha), str(\beta))$. For an arc $e = (\alpha, \beta)$ we define $e^R = (\beta^R, \alpha^R)$. Note that the weight of e^R is the same as the weight of *e*.

For paths π in \widetilde{G}_S we also use the notions of $str(\pi)$ and $ov(\pi)$. We say that a path π in \widetilde{G}_S is *semi-Hamiltonian* if π contains, for every vertex $\alpha \in \widetilde{G}_S$, exactly one of the two vertices α , α^R . Observe that a solution to SCS-R problem for a reverse-factor-free set *S* corresponds to a maximum-weight semi-Hamiltonian path π in the overlap graph \widetilde{G}_S .

3. Greedy algorithm and its linear-time implementation

We define an auxiliary procedure MAKE-REVERSE-FACTOR-FREE(*S*) that removes from *S* all strings *u* which are contained as a factor in *v* or v^R for some $v \in S$, $v \neq u$. Note that the resulting set *S'* is reverse-factor-free and, moreover, a string is a common superstring with reversals for *S'* if and only if it is a common superstring with reversals for *S*.

Example 1. Let $S = \{ab, aaa, aab, baa\}$. Then MAKE-REVERSE-FACTOR-FREE(S) produces $S' = \{aaa, aab\}$ or $S' = \{aaa, baa\}$.

Download English Version:

https://daneshyari.com/en/article/427067

Download Persian Version:

https://daneshyari.com/article/427067

Daneshyari.com