
Information Processing Letters 116 (2016) 15–21

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A priority heuristic for the guillotine rectangular packing 

problem

Defu Zhang a,b,∗, Leyuan Shi b, Stephen C.H. Leung c, Tao Wu b

a Department of Computer Science, Xiamen University, 361005, China
b Department of Industrial and Systems Engineering, University of Wisconsin-Madison, USA
c Department of Management Sciences, City University of Hong Kong, Hong Kong

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 April 2014
Received in revised form 21 June 2015
Accepted 6 August 2015
Available online 21 August 2015
Communicated by S.M. Yiu

Keywords:
Packing problem
Heuristic algorithm
Recursive
Design of algorithms

A new priority heuristic is presented for the guillotine rectangular packing problem. This 
heuristic first selects one available item for a given position by a priority strategy. Then it 
divides the remaining space into two rectangular bins and packs them recursively, and its 
worst-case time complexity is T (n) = O(n2). The proposed algorithm is a general, simple 
and efficient method, and can solve different packing problems. Computational results on a 
wide range of benchmark problems have shown that the proposed algorithm outperforms 
existing heuristics in the literature, on average.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cutting and packing problems are related to many ar-
eas of operations research as they have diverse industrial 
applications such as apparel manufacturing, glass cutting, 
multiprocessor task scheduling, cargo loading and inte-
grated circuit layout design. These applications can be for-
mulated as packing problems with their respective con-
straints and objectives. Possible constraints include guillo-
tine cutting and fixed orientation packing. Guillotine cut-
ting is often required in many industrial fields since the 
machine cuts different types of materials into many small 
pieces using orthogonal cutting. The objective is to mini-
mize the waste or height of material or maximize space 
utilization in the bin.

According to the typology of packing problems in 
Wäscher et al. [17], the guillotine rectangular packing 

* Corresponding author at: Department of Computer Science, Xia-
men University, 361005, China. Tel.: +86 0592 5918207; fax: +86 0592 
2580258.

E-mail address: dfzhang@xmu.edu.cn (D. Zhang).

problems (GRPP) include two classes, each class includes 
two variants:

• Strip packing problem (SPP): Given an open bin of 
width W and unlimited height, and a set of n rectan-
gular items with sizes (hi, wi), i = 1, . . . , n, the objec-
tive is to place each item in the bin without overlap-
ping, such that the bin’s required height is minimized. 
This problem includes two variants: OG and RG, where 
O denotes the case where items are placed with a 
fixed orientation, G denotes guillotine constraints are 
required, and R denotes items may be rotated by 90 
degrees.

• Single bin packing problem (SBPP): Given a rectangular 
bin of width W and height H , and a set of n rectangu-
lar items, the objective is to maximize space utilization 
(or “filling rate”) of the rectangular bin. Similarly, this 
problem includes two-variants: OG and RG.

GRPP is NP-hard and is difficult to solve (Belov [1], Mes-
saoud et al. [12]). Some researches for GRPP have shown 
exact algorithms only solve small-scale problems (Hifi and 

http://dx.doi.org/10.1016/j.ipl.2015.08.008
0020-0190/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2015.08.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:dfzhang@xmu.edu.cn
http://dx.doi.org/10.1016/j.ipl.2015.08.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.08.008&domain=pdf


16 D. Zhang et al. / Information Processing Letters 116 (2016) 15–21

Fig. 1. Possible cases for S while placing one item.

M’Hallah [6], Cui et al. [5]), heuristic algorithms are pre-
ferred if fast computing is required for real-world applica-
tions.

Constructive heuristic algorithms cannot guarantee a 
solution of good quality but they can find a feasible solu-
tion in relatively short time. In particular, they can be com-
bined with exact algorithms and metaheuristic algorithms. 
Coffman et al. [3], Coffman and Shor [4] presented sev-
eral level-oriented heuristic algorithms: first-fit decreasing 
height (FFDH) algorithm, best-fit decreasing height (BFDH) 
algorithm. Lodi et al. [10] introduced the floor-ceiling (FC) 
algorithm. Martello et al. [11] also developed a heuristic 
algorithm (JOIN). Zhang et al. [20] presented a heuristic 
recursive algorithm (HR). Bortfeldt [2] further improved 
BFDH and obtained a BFDH* algorithm. Polyakovsky and 
M’Hallah [16] presented a new guillotine bottom left (GBL) 
heuristic algorithm. Ortmann et al. [14] developed four 
new and improved heuristic algorithms: modified size-
alternating stack algorithm (SASm), best fit with stacking 
algorithm (BFS), stack ceiling {with re-sorting} algorithm 
(SC{R}), and stack level algorithm (SL5).

Based on constructive heuristics, metaheuristics are 
widely applied to solve GRPP (Bortfeldt [2], Polyakovsky 
and M’Hallah [16], Wei et al. [19], Hong et al. [7]), and ob-
tained some excellent results. Therefore, it is important to 
design a general heuristic algorithm that can quickly find 
a solution for GRPP.

2. New priority heuristic algorithm

A recursive technique is useful for GRPP as it may be 
used to restrict items’ locations such that they can satisfy 
the guillotine constraint. The concept is simple as a rectan-
gular space may be divided into several smaller rectangular 
spaces, and each smaller space can be divided recursively. 
From Fig. 1(a), we observe that the rectangular bin S is 
determined by its position (x, y), and its width w and its 
height h. The core purpose of the proposed algorithm is to 
fill S efficiently.

Each unplaced item can be placed into S resulting 
in five scenarios (the placed item is marked in black): 
Fig. 1(a)–(e) express cases (a)–(e) respectively. It can be ob-
served intuitively that case (a) is the best because the item 
fills up the whole space. Cases (b) and (c) are better than 
case (d) because the remaining space in cases (b) and (c) 
are rectangles, while the remaining space in case (d) re-
quires careful partitioning. Case (e) represents that no item 
can be placed into S and S is wasted. Which of cases (b) 
or (c) is better depends on the practical problems. Dif-
ferent problems may consider different sorting of items. 
For strip packing problem, sorting is usually selected by 
non-increasing height. Under this case, case (b) is said to 
be better than case (c) because the item with the larger 
height may have more chance to be selected to place first. 

Fig. 2. The way of partitioning of S .

Similarly, if sorting is done by non-increasing width, then 
case (c) is better than case (b). Assume that the items 
are sorted by non-increasing height, then items that match 
cases (a), (b), (c), (d) and (e) are assigned priority 1, 2, 3, 4 
and 5, respectively.

Among unplaced items, those with the highest prior-
ity (1 is the highest) are chosen for placement first. Stop 
packing S when case (e) occurs because all unpacked items 
cannot be packed into S . For cases (b) and (c), the num-
ber of bins to be placed does not increase. If two or more 
items have the same priority, then the first hit item in the 
sorted list is packed first. For case (d), the division of S
is important, and is done as follows: Let min w and min h
be the two parameters related to all unplaced items where, 
for fixed orientation packing, min w is the minimum width 
of all unplaced items and min h is the minimum height 
of all unplaced items. According to Fig. 2(b), if the value 
w − ω is less than min w , S is divided into S1 and S2, as 
in Fig. 2(a) instead of as in Fig. 2(c), which implies that S2
will be wasted, however, S2 in Fig. 2(c) is larger than S2
in Fig. 2(a). Therefore, this partition can make S1 larger, so 
that it can be used by other unplaced items. Similarly, if 
the value h − d is less than min h, then S is divided into 
S1 and S2, as in Fig. 2(c), implying that S1 will be wasted. 
Otherwise, there are two ways to divide S , as in Fig. 2(a) 
and (c). One partition is as in Fig. 2(a), another partition 
is shown in Fig. 2(c). Which partition is selected depends 
on if ω is less than min w . If ω is less than min w , then 
the former is selected because condition ω < min w leads 
to waste of bin S1 as in Fig. 2(c).

In fact, orientation of the partition is the determining 
factor and depends on the way the items are sorted. The 
aim of the strip packing problem is to minimize the height 
of the bin, such that the partition in Fig. 2(c) is more effi-
cient because items with large heights have greater chance 
to be placed. For the single bin packing problem, orienta-
tion of the partition is mainly determined by the way the 
items are sorted. Orientation of the partition is shown in 
Fig. 2(c), when items are sorted by non-increasing width, 
because the case of ω < min w rarely occurs and items 
with large heights have a greater chance to be placed. In 
fact, partitioning may be proceeded more carefully by con-
sidering d < min h or by taking other factors into account. 
For example, for the case of d < min h, dividing S into S1
and S2 as in Fig. 2(a) will result the wastage of S2. In 
this case, the partition as in Fig. 2(c) is better. However, 
it is a complex issue and depends on the nature of the 



Download English Version:

https://daneshyari.com/en/article/427082

Download Persian Version:

https://daneshyari.com/article/427082

Daneshyari.com

https://daneshyari.com/en/article/427082
https://daneshyari.com/article/427082
https://daneshyari.com

