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Given a nonempty graph G and a function ξ that assigns positive integers to the edges 
of G , a ξ-coloring of G is a vertex coloring of G such that for every edge uv of G the 
colors assigned to the vertices u and v differ by at least ξ(uv). In the paper we study the 
problem of finding ξ-colorings with minimal span, i.e. the difference between the largest 
and the smallest color used. We show that the problem, restricted to subcubic graphs, is:

• NP-hard in the strong sense but polynomially 3
2 -approximable for functions ξ that 

take at most two values;
• polynomially 2-approximable and not (1 + ε)-approximable for any ε < 1

2 , unless 
P = NP.

We also show that, if we additionally assume that the edges that received the largest of 
the values of ξ induce a spanning and connected subgraph, then it becomes

• polynomially 4
3 -approximable;

• polynomially solvable provided ξ takes at most two values.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The frequency assignment problem (FAP), introduced by 
Hale in [1], can be briefly stated as follows: there are sev-
eral transmitters in a certain region of a plane; assign 
frequencies to the transmitters in such a way that inter-
ference is avoided and the used frequency band is as small 
as possible. There are several graph-theoretic models for 
FAP but all of them share the same idea: the transmitters 
are represented as vertices, possible interference is mod-
eled as edges, the frequencies are assumed to be integers 
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and the solution to the problem is a vertex coloring satis-
fying some additional conditions.

The L(p, q)-labeling is one of these models. In the 
model the emphasis is placed on the interference caused 
by the proximity of the transmitters: the closer they are, 
the interference is stronger. More precisely, the L(p, q)-
labeling problem can be stated as follows: given positive 
integers p, q and a graph G , find a vertex coloring of G
such that the colors assigned to vertices u, v differ by at 
least p, if they are adjacent, and differ by at least q, if 
they are at distance 2. The required coloring should mini-
mize the span, i.e. the difference between the largest and 
the smallest color used. See [2] for a survey of results con-
cerning this model.

The backbone coloring problem is another model. In the 
problem we assume the existence of a certain substruc-
ture in a modeled network, called backbone, with higher 
requirements concerning the level of interference. More 
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precisely, this problem can be stated as follows: given a 
graph G , its spanning subgraph H (the backbone) and a 
positive integer λ, find a vertex coloring of G such that 
the colors assigned to vertices adjacent in H differ by 
at least λ. Of course, the required coloring should mini-
mize the span—this requirement is present in every model 
of FAP. See [3] for more information about this model.

In the paper we study a problem that may be viewed 
as a generalization of the above FAP models: given a 
graph G and a function ξ that assigns positive integers to 
the edges of G , find a vertex coloring c of G such that 
|c(u) − c(v)| ≥ ξ(uv) for every edge uv of G and the span 
of c is minimal. We show that this problem, restricted to 
subcubic graphs, is NP-hard in the strong sense but poly-
nomially 3

2 -approximable even for functions ξ that take 
at most two values, polynomially 2-approximable and not 
(1 + ε)-approximable for any ε < 1

2 , unless P = NP. Next, 
we study a subproblem in which we additionally assume 
that the edges that received the largest of the values of ξ
induce a spanning and connected subgraph. We show that 
this subproblem is polynomially 4

3 -approximable and, if ξ
takes at most two values, polynomially solvable.

Our motivation to investigate this problem for the class 
of subcubic graphs (i.e. graphs with degree at most 3) is 
twofold. First, as it is well known that all subcubic graphs 
except K4 are 3-colorable, therefore the coloring problem 
for subcubic graphs is solvable in polynomial time, which 
follows from famous Brooks’ theorem. Second, the follow-
ing results generalize the results obtained for the backbone 
coloring problem in [4], where we presented an O (n2) al-
gorithm for subcubic graphs and we proved that the prob-
lem is NP-hard for graphs with degree greater than 4.

2. Preliminaries

We begin with some definitions, notations and prelim-
inary results. Let G = (V , E) be a nonempty graph and 
ξ : E → N be a function.

Definition 1. A function c : V → Z is a ξ -coloring of G if 
and only if |c(u) − c(v)| ≥ ξ(uv) for all edges uv ∈ E .

Definition 2. The span of a ξ -coloring c, denoted by sp(c), 
is the difference between the largest and the smallest in-
teger used by c.

The minimal possible span over all ξ -colorings of G , 
denoted by sp(G, ξ), will be called the ξ -span of G . 
A ξ -coloring c of G is optimal if and only if its span equals 
sp(G, ξ).

Proposition 1. Let G = (V , E) be a graph and G ′ = (V ′, E ′) be 
a nonempty subgraph of G. If ξ : E → N and ξ ′ : E ′ → N are 
functions such that ξ ′ ≤ ξ |E ′ then sp(G ′, ξ ′) ≤ sp(G, ξ).

Proof. It follows immediately from the fact that if c is a 
ξ -coloring of G then c|V ′ is a ξ ′-coloring of G ′ . �

The greedy algorithm can be adapted to produce 
ξ -colorings. Given an ordering v1, v2, . . . , vn of vertices 

of G , it assigns the first available color c(vi) to the vertex 
vi for i = 1, 2, . . . , n, i.e. sets c(vi) = 0 if i = 1 or vi has no 
neighbors in v1, v2, . . . , vi−1, or

c(vi) = min{k ≥ 0 : |k − c(v j)| ≥ ξ(v j vi) for all j < i

such that v j vi ∈ E},
otherwise.

Proposition 2. Let G = (V , E) be a nonempty graph and 
ξ : E → N be a function. There is an ordering of vertices of G
such that the greedy algorithm, run at this ordering, produces 
an optimal ξ -coloring of G.

Proof. Let c be an optimal ξ -coloring of G such that 
min c(V ) = 0 and v1, v2, . . . , vn be any ordering of ver-
tices of G such that c(v1) ≤ c(v2) ≤ . . . ≤ c(vn). Let c′ be 
a ξ -coloring produced by the greedy algorithm on that 
ordering. To complete the proof, it suffices to show that 
c′(vk) ≤ c(vk) for k ≤ n. To this aim we use induction on k.

It is obvious for k = 1 since c(v1) = min c(V ) = 0 and 
c′(v1) = 0. Assume that c′(vi) ≤ c(vi) for i < k, where 
2 ≤ k ≤ n. Then either c′(vk) = 0 ≤ c(vk), when vk has 
no previously colored neighbors, or c′(vk) ≤ max{c′(vi) +
ξ(vi vk) : i < k ∧ vi vk ∈ E} ≤ max{c(vi) + ξ(vi vk) : i < k ∧
vi vk ∈ E} ≤ c(vk). �
Corollary 3. Let G = (V , E) be a nonempty graph and ξ :
E →N be a function.

(1) There is an optimal ξ -coloring c of G such that for each ver-
tex v there is a function ζv : E → {0, 1} such that c(v) =∑

e∈E ξ(e)ζv (e).
(2) There is a function ζ : E → {0, 1} such that sp(G, ξ) =∑

e∈E ξ(e)ζ(e).

Proof. (1) By Proposition 2 there is an ordering v1, v2,

. . . , vn of vertices of G such that the ξ -coloring c pro-
duced by the greedy algorithm for this ordering, is opti-
mal. We will use induction on k to show that c has the 
following, stronger than required, property: there is a func-
tion ζvk : E → {0, 1} such that c(vk) = ∑

e∈E ξ(e)ζvk (e) and 
ζvk (e) = 0 if at least one of the endpoints of e has number 
greater than k.

It is obvious for k = 1 since c(v1) = 0. Assume that 
it holds for i < k (k ≥ 2). If vk has no neighbors in 
v1, v2, . . . , vk−1 or all its neighbors in v1, v2, . . . , vk−1
have been assigned colors greater than c(vk) then c(vk)=0
and clearly our claim holds. Otherwise, there is a vertex vi

such that i < k, vi vk ∈ E and c(vi) < c(vk). Without loss 
of generality we assume that c(vi) + ξ(vi vk) is maximal. 
Then c(vk) = c(vi) + ξ(vi vk) since otherwise c(vk) would 
not be the first available color for vk , and our claim follows 
immediately from the inductional assumption.

(2) It follows immediately from the proof of (1) since 
the coloring c used in this proof satisfies min c(V ) = 0. �

Recall that χ usually denotes the chromatic number 
of G .
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