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Tarjan’s algorithm for finding the strongly connected components of a directed graph is 
widely used and acclaimed. His original algorithm required at most v(2 + 5w) bits of 
storage, where w is the machine’s word size, whilst Nuutila and Soisalon-Soininen reduced 
this to v(1 + 4w). Many real world applications routinely operate on very large graphs 
where the storage requirements of such algorithms is a concern. We present a novel 
improvement on Tarjan’s algorithm which reduces the space requirements to v(1 + 3w)

bits in the worst case. Furthermore, our algorithm has been independently integrated into 
the widely-used SciPy library for scientific computing.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

For a directed graph D = (V , E), a Strongly Connected 
Component (SCC) is a maximal induced subgraph S =
(V S , E S) where, for every x, y ∈ V S , there is a path from 
x to y (and vice-versa). Tarjan presented a now well-
established algorithm for computing the strongly con-
nected components of a digraph in time �(v + e) [14]. 
In the worst case, this needs v(2 + 5w) bits of storage, 
where w is the machine’s word size. Nuutila and Soisalon-
Soininen reduced this to v(1 + 4w) [10]. In this paper, 
we present for the first time an algorithm requiring only 
v(1 + 3w) bits in the worst case. Furthermore, this algo-
rithm has been independently integrated into the widely-
used SciPy library for scientific computing specifically be-
cause of its ability to handle larger graphs in practice [13].

Tarjan’s algorithm has found numerous uses in the liter-
ature, often as a subcomponent of larger algorithms, such 
as those for transitive closure [9], compiler optimisation [5], 
program analysis [1,11] and for bisimulation equivalence [2]
to name but a few. Of particular relevance is its use in 
model checking [7,12], where the algorithm’s storage re-
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quirements are a critical factor limiting the number of 
states which can be explored [8,4].

2. Depth-First Search

Algorithm 1 presents a well-known procedure for 
traversing digraphs, known as Depth First Search (DFS). 
We say that an edge v → w is traversed if visit(w) is 
called from visit(v) and that the value of index on entry 
to visit(v) is the visitation index of v . Furthermore, when 
visit(w) returns we say the algorithm is backtracking from 
w to v . The algorithm works by traversing along some 
branch until a leaf or a previously visited vertex is reached; 
then, it backtracks to the most recently visited vertex with 
an unexplored edge and proceeds along this; when there is 
no such vertex, one is chosen from the set of unvisited ver-
tices and this continues until the whole digraph has been 
explored. Such a traversal always corresponds to a series 
of disjoint trees, called traversal trees, which span the di-
graph. Taken together, these are referred to as a traversal 
forest. Fig. 1 provides some example traversal forests.

Formally, F = (I, T0, . . . , Tn) denotes a traversal forest 
over a digraph D = (V , E). Here, I maps every vertex to 
its visitation index and each Ti is a traversal tree given by 
(r, V Ti ⊆ V , ETi ⊆ E), where r is its root. It is easy to see 
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Fig. 1. Illustrating three possible traversal forests for the same graph. The key is as follows: vertices are subscripted with their visitation index; dotted lines 
separate traversal trees; dashed edges indicate those edges not traversed; finally, bold vertices are tree roots.

Algorithm 1 DFS(V,E).

1: index = 0
2: for all v ∈ V do visited[v] = false
3: for all v ∈ V do
4: if ¬visited[v] then visit(v)

procedure visit(v)

5: visited[v] = true ; index = index + 1
6: for all v →w ∈ E do
7: if ¬visited[w] then visit(w)

that, if visit(x) is called from the outer loop, then x is the 
root of a traversal tree. For a traversal forest F , those edges 
making up its traversal trees are tree-edges, whilst the re-
mainder are non-tree edges. Non-tree edges can be further 
subdivided into forward-, back- and cross-edges:

Definition 1. For a directed graph, D = (V , E), a node x

reaches a node y, written x D� y, if x = y or ∃z.[x → z ∈
E ∧ z

D� y]. The D is often omitted from D�, when it is 
clear from the context.

Definition 2. For a digraph D =(V , E), an edge x → y ∈E is 
a forward-edge, with respect to some tree T = (r, V T , ET ), 
if x → y /∈ ET ∧ x �= y ∧ x T� y.

Definition 3. For a digraph D =(V , E), an edge x → y ∈E is 
a back-edge, with respect to some tree T = (r, V T , ET ), if 
x → y /∈ ET ∧ y T�x.

Cross-edges constitute those which are neither forward-
nor back-edges. A few simple observations can be made 
about these edge types: firstly, if x → y is a forward-edge, 
then I(x) < I(y); secondly, cross-edges may be intra-tree
(i.e. connecting vertices in the same tree) or inter-tree; 
thirdly, for a back-edge x → y (note, Tarjan called these 
fronds), it holds that I(x) ≥ I(y) and all vertices on a path 
from y to x are part of the same strongly connected com-
ponent. In fact, it can also be shown that I(x) > I(y) al-
ways holds for a cross-edge x → y (see Lemma 1, page 51).

Two fundamental concepts behind efficient algorithms 
for this problem are the local root (note, Tarjan called these 
LOWLINK values) and component root: the local root of v is 

the vertex with the lowest visitation index of any in the 
same component reachable by a path from v involving at 
most one back-edge; the root of a component is the mem-
ber with lowest visitation index. The significance of local 
roots is that they can be computed efficiently and that, if r
is the local root of v , then r=v iff v is the root of a com-
ponent (see Lemma 3, page 52). Thus, local roots can be 
used to identify component roots.

Another important topic, at least from the point of view 
of this paper, is the additional storage requirements of Al-
gorithm 1 over that of the underlying graph data structure. 
Certainly, v bits are needed for visited[·], where v = |V |. 
Furthermore, each activation record for visit(·) holds the 
value of v , as well as the current position in v ’s out-edge 
set. The latter is needed to ensure each edge is iterated at 
most once. Since no vertex can be visited twice, the call-
stack can be at most v vertices deep and, hence, consumes 
at most 2v w bits of storage, where w is the machine’s 
word size. Note, while each activation record may hold 
more items in practice (e.g. the return address), these can 
be avoided by using a non-recursive implementation (see 
Section 4). Thus, Algorithm 1 requires at most v(1 + 2w)

bits of storage. Note, we have ignored index here, since we 
are concerned only with storage proportional to |V |.

3. Improved algorithm for finding strongly connected 
components

Tarjan’s algorithm and its variants are based upon Al-
gorithm 1 and the ideas laid out in the previous section. 
Given a directed graph D = (V , E), the objective is to com-
pute an array mapping vertices to component identifiers, 
such that v and w map to the same identifier iff they are 
members of the same component. Tarjan was the first to 
show this could be done in �(v + e) time, where v = |V |
and e = |E|. Tarjan’s algorithm uses the backtracking phase 
of Depth-First Search to explicitly compute the local root 
of each vertex. An array of size |V |, mapping each vertex 
to its local root, stores this information. Another array of 
size |V | is needed to map vertices to their visitation in-
dex. Thus, these two arrays consume 2v w bits of storage 
between them.

The key insight behind our improvement is that these 
arrays can, in fact, be combined into one. This array, 
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