
Information Processing Letters 116 (2016) 47–52

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A space-efficient algorithm for finding strongly connected

components

David J. Pearce

School of Engineering and Computer Science, Victoria University, New Zealand

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 March 2015
Received in revised form 25 August 2015
Accepted 31 August 2015
Available online 9 September 2015
Communicated by Ł. Kowalik

Keywords:
Graph algorithms
Strongly connected components
Depth-First Search

Tarjan’s algorithm for finding the strongly connected components of a directed graph is
widely used and acclaimed. His original algorithm required at most v(2 + 5w) bits of
storage, where w is the machine’s word size, whilst Nuutila and Soisalon-Soininen reduced
this to v(1 + 4w). Many real world applications routinely operate on very large graphs
where the storage requirements of such algorithms is a concern. We present a novel
improvement on Tarjan’s algorithm which reduces the space requirements to v(1 + 3w)

bits in the worst case. Furthermore, our algorithm has been independently integrated into
the widely-used SciPy library for scientific computing.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

For a directed graph D = (V , E), a Strongly Connected
Component (SCC) is a maximal induced subgraph S =
(V S , E S) where, for every x, y ∈ V S , there is a path from
x to y (and vice-versa). Tarjan presented a now well-
established algorithm for computing the strongly con-
nected components of a digraph in time �(v + e) [14].
In the worst case, this needs v(2 + 5w) bits of storage,
where w is the machine’s word size. Nuutila and Soisalon-
Soininen reduced this to v(1 + 4w) [10]. In this paper,
we present for the first time an algorithm requiring only
v(1 + 3w) bits in the worst case. Furthermore, this algo-
rithm has been independently integrated into the widely-
used SciPy library for scientific computing specifically be-
cause of its ability to handle larger graphs in practice [13].

Tarjan’s algorithm has found numerous uses in the liter-
ature, often as a subcomponent of larger algorithms, such
as those for transitive closure [9], compiler optimisation [5],
program analysis [1,11] and for bisimulation equivalence [2]
to name but a few. Of particular relevance is its use in
model checking [7,12], where the algorithm’s storage re-

E-mail address: david.pearce@ecs.vuw.ac.nz.

quirements are a critical factor limiting the number of
states which can be explored [8,4].

2. Depth-First Search

Algorithm 1 presents a well-known procedure for
traversing digraphs, known as Depth First Search (DFS).
We say that an edge v → w is traversed if visit(w) is
called from visit(v) and that the value of index on entry
to visit(v) is the visitation index of v . Furthermore, when
visit(w) returns we say the algorithm is backtracking from
w to v . The algorithm works by traversing along some
branch until a leaf or a previously visited vertex is reached;
then, it backtracks to the most recently visited vertex with
an unexplored edge and proceeds along this; when there is
no such vertex, one is chosen from the set of unvisited ver-
tices and this continues until the whole digraph has been
explored. Such a traversal always corresponds to a series
of disjoint trees, called traversal trees, which span the di-
graph. Taken together, these are referred to as a traversal
forest. Fig. 1 provides some example traversal forests.

Formally, F = (I, T0, . . . , Tn) denotes a traversal forest
over a digraph D = (V , E). Here, I maps every vertex to
its visitation index and each Ti is a traversal tree given by
(r, V Ti ⊆ V , ETi ⊆ E), where r is its root. It is easy to see

http://dx.doi.org/10.1016/j.ipl.2015.08.010
0020-0190/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2015.08.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:david.pearce@ecs.vuw.ac.nz
http://dx.doi.org/10.1016/j.ipl.2015.08.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.08.010&domain=pdf

48 D.J. Pearce / Information Processing Letters 116 (2016) 47–52

Fig. 1. Illustrating three possible traversal forests for the same graph. The key is as follows: vertices are subscripted with their visitation index; dotted lines
separate traversal trees; dashed edges indicate those edges not traversed; finally, bold vertices are tree roots.

Algorithm 1 DFS(V,E).

1: index = 0
2: for all v ∈ V do visited[v] = false
3: for all v ∈ V do
4: if ¬visited[v] then visit(v)

procedure visit(v)

5: visited[v] = true ; index = index + 1
6: for all v →w ∈ E do
7: if ¬visited[w] then visit(w)

that, if visit(x) is called from the outer loop, then x is the
root of a traversal tree. For a traversal forest F , those edges
making up its traversal trees are tree-edges, whilst the re-
mainder are non-tree edges. Non-tree edges can be further
subdivided into forward-, back- and cross-edges:

Definition 1. For a directed graph, D = (V , E), a node x

reaches a node y, written x D� y, if x = y or ∃z.[x → z ∈
E ∧ z

D� y]. The D is often omitted from D�, when it is
clear from the context.

Definition 2. For a digraph D =(V , E), an edge x → y ∈E is
a forward-edge, with respect to some tree T = (r, V T , ET),
if x → y /∈ ET ∧ x �= y ∧ x T� y.

Definition 3. For a digraph D =(V , E), an edge x → y ∈E is
a back-edge, with respect to some tree T = (r, V T , ET), if
x → y /∈ ET ∧ y T�x.

Cross-edges constitute those which are neither forward-
nor back-edges. A few simple observations can be made
about these edge types: firstly, if x → y is a forward-edge,
then I(x) < I(y); secondly, cross-edges may be intra-tree
(i.e. connecting vertices in the same tree) or inter-tree;
thirdly, for a back-edge x → y (note, Tarjan called these
fronds), it holds that I(x) ≥ I(y) and all vertices on a path
from y to x are part of the same strongly connected com-
ponent. In fact, it can also be shown that I(x) > I(y) al-
ways holds for a cross-edge x → y (see Lemma 1, page 51).

Two fundamental concepts behind efficient algorithms
for this problem are the local root (note, Tarjan called these
LOWLINK values) and component root: the local root of v is

the vertex with the lowest visitation index of any in the
same component reachable by a path from v involving at
most one back-edge; the root of a component is the mem-
ber with lowest visitation index. The significance of local
roots is that they can be computed efficiently and that, if r
is the local root of v , then r=v iff v is the root of a com-
ponent (see Lemma 3, page 52). Thus, local roots can be
used to identify component roots.

Another important topic, at least from the point of view
of this paper, is the additional storage requirements of Al-
gorithm 1 over that of the underlying graph data structure.
Certainly, v bits are needed for visited[·], where v = |V |.
Furthermore, each activation record for visit(·) holds the
value of v , as well as the current position in v ’s out-edge
set. The latter is needed to ensure each edge is iterated at
most once. Since no vertex can be visited twice, the call-
stack can be at most v vertices deep and, hence, consumes
at most 2v w bits of storage, where w is the machine’s
word size. Note, while each activation record may hold
more items in practice (e.g. the return address), these can
be avoided by using a non-recursive implementation (see
Section 4). Thus, Algorithm 1 requires at most v(1 + 2w)

bits of storage. Note, we have ignored index here, since we
are concerned only with storage proportional to |V |.

3. Improved algorithm for finding strongly connected
components

Tarjan’s algorithm and its variants are based upon Al-
gorithm 1 and the ideas laid out in the previous section.
Given a directed graph D = (V , E), the objective is to com-
pute an array mapping vertices to component identifiers,
such that v and w map to the same identifier iff they are
members of the same component. Tarjan was the first to
show this could be done in �(v + e) time, where v = |V |
and e = |E|. Tarjan’s algorithm uses the backtracking phase
of Depth-First Search to explicitly compute the local root
of each vertex. An array of size |V |, mapping each vertex
to its local root, stores this information. Another array of
size |V | is needed to map vertices to their visitation in-
dex. Thus, these two arrays consume 2v w bits of storage
between them.

The key insight behind our improvement is that these
arrays can, in fact, be combined into one. This array,

Download	English	Version:

https://daneshyari.com/en/article/427087

Download	Persian	Version:

https://daneshyari.com/article/427087

Daneshyari.com

https://daneshyari.com/en/article/427087
https://daneshyari.com/article/427087
https://daneshyari.com/

