
Information Processing Letters 115 (2015) 655–659

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Constructing LZ78 tries and position heaps in linear time

for large alphabets

Yuto Nakashima a,∗, Tomohiro I b, Shunsuke Inenaga a, Hideo Bannai a,
Masayuki Takeda a

a Department of Informatics, Kyushu University, Japan
b Department of Computer Science, TU Dortmund, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 May 2014
Received in revised form 23 February 2015
Accepted 1 April 2015
Available online 4 April 2015
Communicated by Tsan-sheng Hsu

Keywords:
Algorithms
Data structures
Lempel–Ziv 78 factorization
Suffix trees
Position heaps
Nearest marked ancestor queries

We present the first worst-case linear-time algorithm to compute the Lempel–Ziv 78
factorization of a given string over an integer alphabet. Our algorithm is based on nearest
marked ancestor queries on the suffix tree of the given string. We also show that the same
technique can be used to construct the position heap of a set of strings in worst-case linear
time, when the set of strings is given as a trie.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Lempel–Ziv 78 (LZ78, in short) is a well known compres-
sion algorithm [19]. LZ78 compresses a given text based on
a dynamic dictionary which is constructed by partitioning
the input string, the process of which is called LZ78 fac-
torization. Other than its obvious use for compression, the
LZ78 factorization is an important concept used in various
string processing algorithms and applications [6,13].

In this paper, we show an LZ78 factorization algorithm
which runs in O (n) time using O (n) working space for an
integer alphabet, where n is the length of a given string
and m is the size of the LZ78 factorization. Our algo-
rithm does not make use of any randomization such as
hashing, and works in O (n) time in the worst case. To our

* Corresponding author.
E-mail addresses: yuto.nakashima@inf.kyushu-u.ac.jp (Y. Nakashima),

tomohiro.i@cs.tu-dortmund.de (T. I), inenaga@inf.kyushu-u.ac.jp
(S. Inenaga), bannai@inf.kyushu-u.ac.jp (H. Bannai),
takeda@inf.kyushu-u.ac.jp (M. Takeda).

knowledge, this is the first O (n)-time LZ78 factorization
algorithm when the size of an integer alphabet is O (n)

and 2
ω(log n log log log n

(log log n)2)
. Our algorithm computes the LZ78

trie (a trie representing the LZ78 factors) via the suffix
tree [17] annotated with a semi-dynamic nearest marked
ancestor data structure [18,1].

We also show that the same idea can be used to con-
struct the position heap [7] of a set of strings which is given
as a trie, and present an O (�)-time algorithm to construct
it, where � is the size of the given trie.

Our results are valid for a standard word RAM model,
where each integer fits in a single machine word and can
be manipulated in O (1) time. Space complexities will be
determined by the number of computer words (not bits).

Some of the results of this paper appeared in the pre-
liminary versions [14,2].

Comparison to previous work
The LZ78 trie (and hence the LZ78 factorization) of a

string of length n can be computed in O (n) expected time

http://dx.doi.org/10.1016/j.ipl.2015.04.002
0020-0190/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2015.04.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:yuto.nakashima@inf.kyushu-u.ac.jp
mailto:tomohiro.i@cs.tu-dortmund.de
mailto:inenaga@inf.kyushu-u.ac.jp
mailto:bannai@inf.kyushu-u.ac.jp
mailto:takeda@inf.kyushu-u.ac.jp
http://dx.doi.org/10.1016/j.ipl.2015.04.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.04.002&domain=pdf

656 Y. Nakashima et al. / Information Processing Letters 115 (2015) 655–659

and O (m) space, if hashing is used for maintaining the
branching nodes of the LZ78 trie [10]. In this paper, we
focus on algorithms without randomization, and we are
interested in the worst-case behavior of LZ78 factoriza-
tion algorithms. If balanced binary search trees are used
in place of hashing, then the LZ78 trie can be computed
in O (n logσ) worst-case time and O (m) working space.
Our O (n)-time algorithm is faster than this method when
σ ∈ ω(1) and σ ∈ O (n). On the other hand, our algorithm
uses O (n) working space, which can be larger than O (m)

when the string is LZ78 compressible. Jansson et al. [12]
proposed an algorithm which computes the LZ78 trie of a
given string in O (n(log log n)2/(logσ n log log log n)) worst-
case time, using O (n(logσ + log logσ n)/ logσ n) bits of
working space. Our O (n)-time algorithm is faster than

theirs when σ ∈ 2
ω(log n log log log n

(log log n)2)
and σ ∈ O (n), and is

as space-efficient as theirs when σ ∈ �(n). Tamakoshi
et al. [16] proposed an algorithm which computes the LZ78
trie in O (n + (s + m) logσ) worst-case time and O (m)

working space, where s is the size of the run length en-
coding (RLE) of a given string. Our O (n)-time algorithm is
faster than theirs when σ ∈ 2ω(n

s+m) and σ ∈ O (n).
The position heap of a single string of length n over

an alphabet of size σ can be computed in O (n logσ)

worst-case time and O (n) space [7], if the branches in the
position heap are maintained by balanced binary search
trees. Independently of this present work, Gagie et al. [11]
showed that the position heap of a given string of length
n over an integer alphabet can be computed in O (n) time
and O (n) space, via the suffix tree of the string.

2. Preliminaries

2.1. Notations on strings

We consider a string w of length n over integer al-
phabet � = {1, . . . , σ }, where σ ∈ O (n). The length of
w is denoted by |w|, namely, |w| = n. The empty string
ε is a string of length 0, namely, |ε| = 0. For a string
w = xyz, x, y and z are called a prefix, substring, and suf-
fix of w , respectively. The set of suffixes of a string w is
denoted by Suffix(w). The i-th character of a string w is
denoted by w[i] for 1 ≤ i ≤ n, and the substring of a string
w that begins at position i and ends at position j is de-
noted by w[i.. j] for 1 ≤ i ≤ j ≤ n. For convenience, let
w[i.. j] = ε if j < i. For any string w , let w R denote the
reversed string of w , i.e., w R = w[n]w[n − 1] · · · w[1].
2.2. Suffix trees

We give the definition of a very important and well
known string index structure, the suffix tree. To assure
property 4 below for the sake of presentation, we assume
that string w ends with a unique character that does not
occur elsewhere in w .

Definition 1 (Suffix trees). (See [17].) For any string w ,
its suffix tree, denoted STree(w), is a labeled rooted tree
which satisfies the following:

1. each edge is labeled with a non-empty substring of w;
2. each internal node has at least two children;

Fig. 1. CST(W) for W = {aaba$, bbba$, ababa$, aabba$, babba$}. Each
node u is associated with id(u).

3. the labels x and y of any two distinct out-going edges
from the same node begin with different symbols
in �;

4. there is a one-to-one correspondence between the suf-
fixes of w and the leaves of STree(w), i.e., every suffix
is spelled out by a unique path from the root to a leaf.

Since any substring of w is a prefix of some suffix of w ,
all substrings of w can be represented as a path from the
root in STree(w). For any node v , let str(v) denote the
string which is a concatenation of the edge labels from the
root to v . A locus of a substring x of w in STree(w) is
a pair (v, γ) of a node v and a (possibly empty) string γ ,
such that str(v)γ = x and γ is the shortest. A locus is said
to be an explicit node if γ = ε, and is said to be an im-
plicit node otherwise. It is well known that STree(w) can
be represented with O (n) space, by representing each edge
label x with a pair (i, j) of positions satisfying x = w[i.. j].
Theorem 1. (See [8].) Given a string w of length n over an inte-
ger alphabet, STree(w) can be computed in O (n) time.

2.3. Suffix trees of multiple strings

A generalized suffix tree of a set of strings is the suf-
fix tree that contains all suffixes of all the strings in the
set. Generalized suffix trees for a set W = {w1$, . . . , wk$}
of strings over an integer alphabet can be constructed in
linear time in the total length of the strings. We assume
that $ is a unique character that does not occur in wi
(1 ≤ i ≤ k), and for any 1 ≤ i, j ≤ k we assume that wi
is not a suffix of w j .

The set W of strings can be represented as a reversed
trie called a common-suffix trie, which is defined as fol-
lows.

Definition 2 (Common-suffix tries). (See [5].) The common-
suffix trie of a set W of strings, denoted CST(W), is a re-
versed trie such that

1. each edge is labeled with a character in �;
2. any two in-coming edges of any node are labeled with

distinct characters;
3. each node v represents the string that is a concatena-

tion of the edge labels in the path from v to the root;
4. for each string w ∈ W there exists a unique leaf which

represents w .

An example of CST(W) is illustrated in Fig. 1.
Let � be the number of nodes in CST(W), and let

Suffix(W) be the set of suffixes of the strings in W , i.e.,

Download	English	Version:

https://daneshyari.com/en/article/427102

Download	Persian	Version:

https://daneshyari.com/article/427102

Daneshyari.com

https://daneshyari.com/en/article/427102
https://daneshyari.com/article/427102
https://daneshyari.com/

