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We present the first worst-case linear-time algorithm to compute the Lempel–Ziv 78 
factorization of a given string over an integer alphabet. Our algorithm is based on nearest 
marked ancestor queries on the suffix tree of the given string. We also show that the same 
technique can be used to construct the position heap of a set of strings in worst-case linear 
time, when the set of strings is given as a trie.
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1. Introduction

Lempel–Ziv 78 (LZ78, in short) is a well known compres-
sion algorithm [19]. LZ78 compresses a given text based on 
a dynamic dictionary which is constructed by partitioning 
the input string, the process of which is called LZ78 fac-
torization. Other than its obvious use for compression, the 
LZ78 factorization is an important concept used in various 
string processing algorithms and applications [6,13].

In this paper, we show an LZ78 factorization algorithm 
which runs in O (n) time using O (n) working space for an 
integer alphabet, where n is the length of a given string 
and m is the size of the LZ78 factorization. Our algo-
rithm does not make use of any randomization such as 
hashing, and works in O (n) time in the worst case. To our 
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knowledge, this is the first O (n)-time LZ78 factorization 
algorithm when the size of an integer alphabet is O (n)

and 2
ω(log n log log log n

(log log n)2 )
. Our algorithm computes the LZ78 

trie (a trie representing the LZ78 factors) via the suffix 
tree [17] annotated with a semi-dynamic nearest marked 
ancestor data structure [18,1].

We also show that the same idea can be used to con-
struct the position heap [7] of a set of strings which is given 
as a trie, and present an O (�)-time algorithm to construct 
it, where � is the size of the given trie.

Our results are valid for a standard word RAM model, 
where each integer fits in a single machine word and can 
be manipulated in O (1) time. Space complexities will be 
determined by the number of computer words (not bits).

Some of the results of this paper appeared in the pre-
liminary versions [14,2].

Comparison to previous work
The LZ78 trie (and hence the LZ78 factorization) of a 

string of length n can be computed in O (n) expected time 
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and O (m) space, if hashing is used for maintaining the 
branching nodes of the LZ78 trie [10]. In this paper, we 
focus on algorithms without randomization, and we are 
interested in the worst-case behavior of LZ78 factoriza-
tion algorithms. If balanced binary search trees are used 
in place of hashing, then the LZ78 trie can be computed 
in O (n logσ) worst-case time and O (m) working space. 
Our O (n)-time algorithm is faster than this method when 
σ ∈ ω(1) and σ ∈ O (n). On the other hand, our algorithm 
uses O (n) working space, which can be larger than O (m)

when the string is LZ78 compressible. Jansson et al. [12]
proposed an algorithm which computes the LZ78 trie of a 
given string in O (n(log log n)2/(logσ n log log log n)) worst-
case time, using O (n(logσ + log logσ n)/ logσ n) bits of 
working space. Our O (n)-time algorithm is faster than 

theirs when σ ∈ 2
ω(log n log log log n

(log log n)2 )
and σ ∈ O (n), and is 

as space-efficient as theirs when σ ∈ �(n). Tamakoshi 
et al. [16] proposed an algorithm which computes the LZ78 
trie in O (n + (s + m) logσ) worst-case time and O (m)

working space, where s is the size of the run length en-
coding (RLE) of a given string. Our O (n)-time algorithm is 
faster than theirs when σ ∈ 2ω( n

s+m ) and σ ∈ O (n).
The position heap of a single string of length n over 

an alphabet of size σ can be computed in O (n logσ)

worst-case time and O (n) space [7], if the branches in the 
position heap are maintained by balanced binary search 
trees. Independently of this present work, Gagie et al. [11]
showed that the position heap of a given string of length 
n over an integer alphabet can be computed in O (n) time 
and O (n) space, via the suffix tree of the string.

2. Preliminaries

2.1. Notations on strings

We consider a string w of length n over integer al-
phabet � = {1, . . . , σ }, where σ ∈ O (n). The length of 
w is denoted by |w|, namely, |w| = n. The empty string 
ε is a string of length 0, namely, |ε| = 0. For a string 
w = xyz, x, y and z are called a prefix, substring, and suf-
fix of w , respectively. The set of suffixes of a string w is 
denoted by Suffix(w). The i-th character of a string w is 
denoted by w[i] for 1 ≤ i ≤ n, and the substring of a string 
w that begins at position i and ends at position j is de-
noted by w[i.. j] for 1 ≤ i ≤ j ≤ n. For convenience, let 
w[i.. j] = ε if j < i. For any string w , let w R denote the 
reversed string of w , i.e., w R = w[n]w[n − 1] · · · w[1].
2.2. Suffix trees

We give the definition of a very important and well 
known string index structure, the suffix tree. To assure 
property 4 below for the sake of presentation, we assume 
that string w ends with a unique character that does not 
occur elsewhere in w .

Definition 1 (Suffix trees). (See [17].) For any string w , 
its suffix tree, denoted STree(w), is a labeled rooted tree 
which satisfies the following:

1. each edge is labeled with a non-empty substring of w;
2. each internal node has at least two children;

Fig. 1. CST(W ) for W = {aaba$, bbba$, ababa$, aabba$, babba$}. Each 
node u is associated with id(u).

3. the labels x and y of any two distinct out-going edges 
from the same node begin with different symbols 
in �;

4. there is a one-to-one correspondence between the suf-
fixes of w and the leaves of STree(w), i.e., every suffix 
is spelled out by a unique path from the root to a leaf.

Since any substring of w is a prefix of some suffix of w , 
all substrings of w can be represented as a path from the 
root in STree(w). For any node v , let str(v) denote the 
string which is a concatenation of the edge labels from the 
root to v . A locus of a substring x of w in STree(w) is 
a pair (v, γ ) of a node v and a (possibly empty) string γ , 
such that str(v)γ = x and γ is the shortest. A locus is said 
to be an explicit node if γ = ε, and is said to be an im-
plicit node otherwise. It is well known that STree(w) can 
be represented with O (n) space, by representing each edge 
label x with a pair (i, j) of positions satisfying x = w[i.. j].
Theorem 1. (See [8].) Given a string w of length n over an inte-
ger alphabet, STree(w) can be computed in O (n) time.

2.3. Suffix trees of multiple strings

A generalized suffix tree of a set of strings is the suf-
fix tree that contains all suffixes of all the strings in the 
set. Generalized suffix trees for a set W = {w1$, . . . , wk$}
of strings over an integer alphabet can be constructed in 
linear time in the total length of the strings. We assume 
that $ is a unique character that does not occur in wi
(1 ≤ i ≤ k), and for any 1 ≤ i, j ≤ k we assume that wi
is not a suffix of w j .

The set W of strings can be represented as a reversed 
trie called a common-suffix trie, which is defined as fol-
lows.

Definition 2 (Common-suffix tries). (See [5].) The common-
suffix trie of a set W of strings, denoted CST(W ), is a re-
versed trie such that

1. each edge is labeled with a character in �;
2. any two in-coming edges of any node are labeled with 

distinct characters;
3. each node v represents the string that is a concatena-

tion of the edge labels in the path from v to the root;
4. for each string w ∈ W there exists a unique leaf which 

represents w .

An example of CST(W ) is illustrated in Fig. 1.
Let � be the number of nodes in CST(W ), and let 

Suffix(W ) be the set of suffixes of the strings in W , i.e., 
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