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1. Introduction

The study of codes in graphs presents a wide general-
ization of the problem of the existence of (classical) error-
correcting codes. In general, for a given graph G we search 
for a subset X of its vertices such that the r-balls centered 
at vertices from X form a partition of the vertex set of G . 
Hamming codes and Lee codes correspond to codes in the 
cartesian product of complete graphs and cycles, respec-
tively.

The study of codes in graphs was initiated by Biggs [1], 
who rightly noticed that the class of all graphs is too gen-
eral a setting, and hence restricted himself to distance-
transitive graphs. Kratochvíl continued the study of (per-
fect) codes in graphs, for instance, in [11] he proved the 
remarkable result that there are no nontrivial 1-perfect 
codes over complete bipartite graphs with at least three 
vertices. (Here “over” means with respect to the cartesian 
product powers of such graphs.)
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Besides being of interest in complexity theory [2], the 
problem is of obvious practical interest, therefore perfect 
codes on various classes of graphs are extensively studied. 
Interesting graph classes include graph products and bun-
dles, which appear to be among widely used topologies for 
computer systems architecture, cf. the famous ILLIAC IV, 
however sometimes under different names (see [3]). The 
concept has applications in game theory and frequency as-
signment [11,4]. Perfect codes of direct product graphs and 
in particular, perfect codes in products of cycles were stud-
ied recently [7–10,14]. In this paper, we study existence of 
perfect codes in direct graph bundles of cycles over cycles 
and provide a complete solution.

The rest of the paper is organized as follows. In the next 
section we provide basic terminology and notation, and 
continue with some basic facts in Section 3. In Sections 4, 
5 and 6 we prove the propositions that are summarized in 
the following two theorems.

Theorem 1.1. Let r ≥ 1, m, n ≥ 3, and t = (r +1)2 +r2 . Let X =
Cm ×σ� Cn be a direct graph bundle with fiber Cn and base Cm. 
Then each connected component of X contains an r-perfect code 
if and only if n is a multiple of t, m > r, and � has a form of 
� = (αt ± ms) modn for some α ∈ ZZ.
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Theorem 1.2. There is no r-perfect code of (a connected compo-
nent of) direct graph bundle Cm ×α Cn where α is a reflection.

2. Terminology and notation

A finite, simple and undirected graph G = (V (G), E(G))

is given by a set of vertices V (G) and a set of edges E(G). 
As usual, the edge {i, j} ∈ E(G) is shortly denoted by i j. 
Two graphs G and H are called isomorphic, in symbols 
G � H , if there exists a bijection ϕ from V (G) onto V (H)

that preserves adjacency and nonadjacency. An isomor-
phism of a graph G onto itself is called an automorphism. 
The identity automorphism on G will be denoted by idG or 
shortly id. The cycle Cn on n vertices is defined by V (Cn) =
{0, 1, . . . , n − 1} and i j ∈ E(Cn) if i = ( j ± 1) mod n. Denote 
by Pn the path on n ≥ 1 distinct vertices 0, 1, 2, . . . , n − 1
with edges i j ∈ E(Pn) if j = i + 1, 0 ≤ i < n − 1.

Let G and H be connected graphs. The direct product
of graphs G and H is the graph G × H with vertex set 
V (G × H) = V (G) × V (H) and whose edges are all pairs 
(g1, h1)(g2, h2) with g1 g2 ∈ E(G) and h1h2 ∈ E(H). The di-
rect product of graphs is commutative and associative in a 
natural way. For more facts on the direct product of graphs 
and other graph products we refer to [5].

Graph bundles are a natural generalization of graph 
products [12]. Let B and G be graphs and Aut(G) be the 
set of automorphisms of G . To any ordered pair of adja-
cent vertices u, v ∈ V (B) we assign an automorphism of G . 
Formally, let α : V (B) × V (B) → Aut(G). For brevity, we 
will write α(u, v) = αu,v and assume that αv,u = α−1

u,v for 
any u, v ∈ V (B). We construct the graph X as follows. The 
vertex set of X is the Cartesian product of vertex sets, 
V (X) = V (B) × V (G). The edges of X are given by the 
rule: for any b1b2 ∈ E(B) and any g1 g2 ∈ E(G), the vertices 
(b1, g1) and (b2, αb1,b2(g2)) are adjacent in X . We call X
a direct graph bundle with base B and fibre G and write 
X = B ×α G .

Clearly, if all αu,v are identity automorphisms, the 
graph bundle is isomorphic to the direct product X =
B ×α G = B × G . Furthermore, it is well-known that if 
the base graph is a tree, then the graph bundle is al-
ways isomorphic to a product, i.e. X = T ×α G � T × G
for any graph G , any tree T and any assignment of auto-
morphisms α [12].

A graph bundle over a cycle can always be constructed 
in a way that all but at most one automorphism are 
identities. Fixing V (Cn) = {0, 1, 2, . . . , n − 1}, let us denote 
αn−1,0 = α, αi−1,i = id for i = 1, 2, . . . , n − 1, and write 
Cn ×α G .

A graph bundle Cn ×α G can be represented also as the 
graph obtained from the product Pn × G by adding (edges 
of) a copy of K2 × G between vertex sets {n − 1} × V (G)

and {0} × V (G) such that if V (K2) = {1, 2} and (1, u) is 
adjacent to (2, v) in K2 × G , then (n − 1, u) and (0, α(v))

are connected by an edge in Cn ×α G . The natural projec-
tion p : Cn ×α G → Cn is called the bundle projection. The 
preimage p−1(u) is called the fiber over u, denoted Fu .

Automorphisms of a cycle are of two types. A cyclic 
shift of the cycle by � elements, denoted by σ� , 0 ≤ � < n, 
maps ui to ui+� (indices are modulo n). As a special case 

we have the identity (� = 0). Other automorphisms of cy-
cles are reflections. Depending on parity of n the reflection 
of a cycle may have one, two or no fixed points. More for-
mally, we define:

• cyclic �-shift, σ� defined as σ�(i) = i + � for i =
0, 1, . . . , n − 1.

• reflection with no fixed points ρ0 defined as ρ0(i) =
n − i − 1 for i = 0, 1, . . . , n − 1. (n even.)

• reflection with one fixed point ρ1 defined as ρ1(i) =
n − i − 1 for i = 0, 1, . . . , n − 1. (n odd; there is exactly 
one fixed point, ρ1(

n−1
2 ) = n − n−1

2 − 1 = n−1
2 .)

• reflection with two fixed points ρ2 defined as ρ2(0) =
0 and ρ2(i) = n − i for i = 1, 2, . . . , n − 1. (n even, the 
second fixed point is ρ2(

n
2 ) = n − n

2 = n
2 .)

Note that in the definition of shifts, the summation 
is calculated modulo n. Throughout the paper, the sum-
mations in first coordinates of vertices will be calculated 
modulo m and in second coordinates modulo n.

For a graph G = (V , E) the distance dG(u, v), or briefly 
d(u, v), between vertices u and v is defined as the num-
ber of edges on a shortest walk from u to v . A walk is a 
sequence v0, e0, v1, e1, v2, . . . , vk of graph vertices vi and 
graph edges ei such that for 1 ≤ i ≤ k, the edge ei has 
endpoints vi−1 and vi . For a vertex v ∈ V let Br(v) =
{u ∈ V | d(u, v) ≤ r} be the r-ball centered at v . In particu-
lar, N [v] = B1(v) and N(v) = N [v] \ {v}. A set C ⊆ V is an 
r-code in G if Br(u) ∩ Br(v) = ∅ for any two distinct ver-
tices u, v ∈ C . In addition, an r-code C is called an r-perfect 
code if {Br(u) | u ∈ C} forms a partition of V .

3. Preliminaries

Let us denote V (Pm) = V 0(m) ∪ V 1(m) where V 0(m) =
{0, 2, 4, . . . , 2�m−1

2 } and V 1(m) = {1, 3, . . . , 2�m−1
2 � − 1}

are the sets of even and odd vertices.
Let Z0(m, n) = (V 0(m) × V 0(n)) ∪ (V 1(m) × V 1(n)) de-

note the even component of Pm × Pn and Z1(m, n) =
(V 0(m) × V 1(n)) ∪ (V 1(m) × V 0(n)) denote the odd com-
ponent of Pm × Pn . The terms even component (odd com-
ponent) have been chosen because vertices (i, j) in even 
(odd) component are exactly those for which i + j is even 
(odd). It is not difficult to see that Z0(m, n) consists of ⌈mn

2

⌉
vertices and (m − 1)(n − 1) edges [5].

Jha [8] showed that for r ≥ 1 and m, n ≥ 2r +2 an r-ball 
in Cm × Cn is isomorphic to Z0(2r + 1, 2r + 1). Delete all 
connections between the fiber Fm−1 and F0 in Cm ×α Cn to 
obtain a graph Pm × Cn . Fibers Fm−1 and F0 and deleted 
connections are a subgraph of Cm ×α Cn isomorphic to 
P2 × Cn , so we can conclude:

Lemma 3.1. Let r ≥ 1, m, n ≥ 2r + 1 and let α be an auto-
morphism of Cn. Then an r-ball in Cm ×α Cn is isomorphic to 
Z0(2r + 1, 2r + 1).

Two examples of an 2-ball in Cm ×α Cn are given in 
Fig. 1.

The fact that the direct product F × G of connected 
and bipartite factors F and G has exactly two components 
was first proved by Weichsel [13]. In particular, Cm × Cn , 
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