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Unambiguous hierarchies [1–3] are defined similarly to the polynomial hierarchy; however, 
all witnesses must be unique. These hierarchies have subtle differences in the mode of 
using oracles. We consider a “loose” unambiguous hierarchy prUH• with relaxed definition 
of oracle access to promise problems. Namely, we allow to make queries that miss the 
promise set; however, the oracle answer in this case can be arbitrary (a similar definition 
of oracle access has been used in [4]).
In this short note we prove that the first part of Toda’s theorem PH ⊆ BP · ⊕P ⊆ PPP can 
be strengthened to PH = BP · prUH•, that is, the closure of our hierarchy under Schöning’s 
BP operator equals the polynomial hierarchy. It is easily seen that BP · prUH• ⊆ BP · ⊕P.
The proof follows the same lines as Toda’s proof, so the main contribution of the present 
note is a new definition that allows to characterize PH as a probabilistic closure of 
unambiguous computations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Around 1990, there was a burst of results about inter-
active protocols [5–12].

In the same time, Seinosuke Toda proved that PH ⊆ BP ·
⊕P ⊆ PPP [13]. The first part of his result can be viewed 
as an Arthur–Merlin game (recall that AM = BP · NP; cf. 
also [14]); however, Merlin must have an odd number of 
correct proofs. One can describe the proof of this part as 
follows. We depart from a relativized version of Valiant–
Vazirani’s lemma and turn the polynomial hierarchy, level 
by level, into a multi-round Arthur–Merlin game where 
Merlin has unique witnesses. Then, this multi-round game 
is collapsed to just two rounds by a technique some-
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what similar to the reduction of the number of rounds in 
Arthur–Merlin proofs (AM(k) = AM(2)) [9]: the probability 
of error is reduced and this allows to exchange neighbour-
ing Merlin and Arthur’s turns. However, it seems like to 
make these ideas work one needs to argue about classes of 
computations that are closed under the complement (since 
∃ and ∀ quantifiers alternate in the polynomial hierarchy) 
and under majority (to reduce the probability of error). 
Toda overcame these obstacles by generalizing nondeter-
ministic computations with unique witnesses to computa-
tions with an odd number of witnesses. This nice solution, 
however, led to the intermediate class BP · ⊕P, which was 
not known to belong to the polynomial hierarchy, and was 
actually wider than needed.

In this paper we strengthen the first part of Toda’s the-
orem by replacing computations with an odd number of 
witnesses by unambiguous computations. However, sim-
ply requiring unique witnesses does not work. To the best 
of our knowledge, two notions of unambiguous hierarchies 
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(constant-round games with unique strategies) were stud-
ied to the date: a hierarchy UH [1,3]1 of unambiguous 
computations with oracle access to languages (UPUP...UP

, 
the computation needs to be unambiguous only for the 
correct oracle) and a hierarchy UH [2,3] with guarded or-
acle access to promise problems2 (that is, the next level of 
the hierarchy is obtained by adding an oracle access to the 
promise version of UP, but queries outside the promise set 
are prohibited). Both hierarchies are contained in the un-
ambiguous alternating polynomial-time class UAP [18] and 
thus in SPP [3] (hence in PP and ⊕P). Obviously these hi-
erarchies are also contained in PH; however, replacing ⊕P
by UH or UH in Toda’s theorem does not work: Valiant–
Vazirani’s reduction NP ⊆ RPpromiseUP (in what follows, we 
abbreviate promise by pr) sometimes outputs an instance 
that has more than one solution and it is unclear how to 
avoid querying the oracle for such an instance (which is 
prohibited in UH or UH).

We therefore relax the definition of the unambiguous 
hierarchy allowing to query the oracle outside its promise 
set. However, the computation must return a correct an-
swer for all possible answers of the oracle to such queries. 
We call this a loose access to the oracle. (A similar no-
tion was used by Chakaravarthy and Roy [4] for querying 
prMA and prAM by deterministic computations, and it is 
also implicitly used for probabilistic computations query-
ing prUP when one formulates Valiant–Vazirani’s lemma 
as NP ⊆ RPprUP .) The resulting hierarchy prUH• contains 
the two hierarchies UH and UH and is still contained 
in PH. We prove that PH ⊆ BP · prUH• (the proof goes 
along the same lines as Toda’s theorem; however, we have 
to use oracles instead of Schöning’s dot-operators all the 
way until the very end). Since BP · prUH• ⊆ BP · ⊕P, this is 
a strengthening of the first part of Toda’s theorem. More-
over, our result is actually an equality; thus, we give a 
natural characterization of PH as a probabilistic closure of 
unambiguous computations.

Spakowski and Tripathi [19] asked3 whether UH and 
UH collapse simultaneously with PH. Since our result is 
proved level by level, it implies that a collapse of prUH•
to the i-th level collapses PH to the (i + 2)-th level. This, 
however, leaves open the question whether a collapse of 
UH or UH implies a collapse of prUH• (and PH).

In what follows, we give definitions and prove our main 
theorem and its consequences. We conclude with a big list 
of further directions.

2. Definitions

Promise problems A language is a subset of {0, 1}∗ , and a 
promise problem is a pair (L, A), where L is a language, and 
A ⊆ {0, 1}∗ is a promise set. To solve a promise problem, 
we need to solve only its instances belonging to A.

For a class of languages C , we consider the class of 
promise problems prC (slightly abusing the notation): 

1 The authors of [1,3] attribute the initiation of this study to Hemachan-
dra.

2 This is similar to smart reductions used in [15] and was apparently 
suggested in the context of unambiguous computations in [16,17].

3 They attribute this question to [2]; however, we did not find it there.

namely, we consider the definition of C and replace all 
references to “every input” by references to “every input 
in A”, where A is a promise set.

For example, one can formally define prBPP and prUP
as follows.

Definition 1. (L, A) ∈ prBPP ⇐⇒ there is a polynomial-
time probabilistic machine M such that ∀x ∈ A Pr{M(x) =
L(x)} ≥ 3/4.

Definition 2. (L, A) ∈ prUP ⇐⇒ there is a polynomial-time 
nondeterministic machine M such that ∀x ∈ A the machine 
M has at most one accepting path on x, and such x ∈ A
belongs to L iff there is such an accepting path.

Note that if a class has a semantic requirement (such as 
bounded error or witness uniqueness), the machine needs 
to satisfy it only on the promise set. Also note that nev-
ertheless if machines in the original class stop in polyno-
mial time, we can w.l.o.g. assume that the machines in the 
new class still stop in polynomial time even outside the 
promise set (if the computational model allows to add a 
polynomial alarm clock).

However, if a class C of languages has syntactic require-
ments only (that is, the corresponding machines can be 
recursively enumerated), the corresponding promise class 
essentially equals C , i.e., prC = {(L, A) | L ∈ C, A ⊆ {0, 1}∗}.

When considering a class D of promise problems, we 
assume it is closed downwards w.r.t. the promise set, i.e., 
if (L, A) ∈D and B ⊆ A, then (L, B) ∈D.

Loose oracle access We define loose oracle access to a 
promise problem so that the oracle returns a correct an-
swer if a query is in the promise set and returns an arbi-
trary answer otherwise.

The notion is absolutely clear for P(O ,A) , that is, for 
polynomial-time deterministic oracle Turing machines. 
It can be applied also to other computational devices. 
For example, L ∈ BPP(O ,A) ⇐⇒ there is a probabilis-
tic polynomial-time oracle machine M• that decides the 
membership in L correctly with probability at least 3/4
irrespectively of the answers returned by the oracle on 
queries that do not belong to A. In particular, the oracle 
can return different answers for the same query outside A.

We will use the notion of loose access similarly not 
just for bounded-error probabilistic oracle Turing ma-
chines (BPP•), but for other oracle machine types as well. 
Throughout this paper, whenever we talk about oracle ac-
cess to promise problems, we mean the “loose” definition 
by default. In order to avoid misunderstanding, we include 
more formal definition for the two main classes of compu-
tations used in this paper.

Definition 3. Let (O , A) be a promise problem. A language 
L ∈ BPP(O ,A) iff there is a probabilistic polynomial-time 
oracle machine M• that uses r(n) random bits such that 
for every input x of length n, there is a set R of strings 
of length r(n) such that |R| ≥ 3

4 2r(n) and for every string 
h ∈ R and for every language L′ that agrees with O on the 
promise set A, ML′

(x, h) = L(x) (where M• is considered 
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