
Information Processing Letters 115 (2015) 725–730

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On the probabilistic closure of the loose unambiguous

hierarchy

Edward A. Hirsch ∗, Dmitry Sokolov

Steklov Institute of Mathematics at St.Petersburg, Russian Academy of Sciences, 27 Fontanka, 191023 St.Petersburg, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 April 2014
Received in revised form 24 March 2015
Accepted 22 April 2015
Available online 28 April 2015
Communicated by A. Muscholl

Keywords:
Computational complexity
Randomized algorithms
Unambiguous computations
Toda’s theorem

Unambiguous hierarchies [1–3] are defined similarly to the polynomial hierarchy; however,
all witnesses must be unique. These hierarchies have subtle differences in the mode of
using oracles. We consider a “loose” unambiguous hierarchy prUH• with relaxed definition
of oracle access to promise problems. Namely, we allow to make queries that miss the
promise set; however, the oracle answer in this case can be arbitrary (a similar definition
of oracle access has been used in [4]).
In this short note we prove that the first part of Toda’s theorem PH ⊆ BP · ⊕P ⊆ PPP can
be strengthened to PH = BP · prUH•, that is, the closure of our hierarchy under Schöning’s
BP operator equals the polynomial hierarchy. It is easily seen that BP · prUH• ⊆ BP · ⊕P.
The proof follows the same lines as Toda’s proof, so the main contribution of the present
note is a new definition that allows to characterize PH as a probabilistic closure of
unambiguous computations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Around 1990, there was a burst of results about inter-
active protocols [5–12].

In the same time, Seinosuke Toda proved that PH ⊆ BP ·
⊕P ⊆ PPP [13]. The first part of his result can be viewed
as an Arthur–Merlin game (recall that AM = BP · NP; cf.
also [14]); however, Merlin must have an odd number of
correct proofs. One can describe the proof of this part as
follows. We depart from a relativized version of Valiant–
Vazirani’s lemma and turn the polynomial hierarchy, level
by level, into a multi-round Arthur–Merlin game where
Merlin has unique witnesses. Then, this multi-round game
is collapsed to just two rounds by a technique some-

* Corresponding author.
E-mail address: hirsch@pdmi.ras.ru (E.A. Hirsch).

what similar to the reduction of the number of rounds in
Arthur–Merlin proofs (AM(k) = AM(2)) [9]: the probability
of error is reduced and this allows to exchange neighbour-
ing Merlin and Arthur’s turns. However, it seems like to
make these ideas work one needs to argue about classes of
computations that are closed under the complement (since
∃ and ∀ quantifiers alternate in the polynomial hierarchy)
and under majority (to reduce the probability of error).
Toda overcame these obstacles by generalizing nondeter-
ministic computations with unique witnesses to computa-
tions with an odd number of witnesses. This nice solution,
however, led to the intermediate class BP · ⊕P, which was
not known to belong to the polynomial hierarchy, and was
actually wider than needed.

In this paper we strengthen the first part of Toda’s the-
orem by replacing computations with an odd number of
witnesses by unambiguous computations. However, sim-
ply requiring unique witnesses does not work. To the best
of our knowledge, two notions of unambiguous hierarchies

http://dx.doi.org/10.1016/j.ipl.2015.04.010
0020-0190/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2015.04.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:hirsch@pdmi.ras.ru
http://dx.doi.org/10.1016/j.ipl.2015.04.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.04.010&domain=pdf

726 E.A. Hirsch, D. Sokolov / Information Processing Letters 115 (2015) 725–730

(constant-round games with unique strategies) were stud-
ied to the date: a hierarchy UH [1,3]1 of unambiguous
computations with oracle access to languages (UPUP...UP

,
the computation needs to be unambiguous only for the
correct oracle) and a hierarchy UH [2,3] with guarded or-
acle access to promise problems2 (that is, the next level of
the hierarchy is obtained by adding an oracle access to the
promise version of UP, but queries outside the promise set
are prohibited). Both hierarchies are contained in the un-
ambiguous alternating polynomial-time class UAP [18] and
thus in SPP [3] (hence in PP and ⊕P). Obviously these hi-
erarchies are also contained in PH; however, replacing ⊕P
by UH or UH in Toda’s theorem does not work: Valiant–
Vazirani’s reduction NP ⊆ RPpromiseUP (in what follows, we
abbreviate promise by pr) sometimes outputs an instance
that has more than one solution and it is unclear how to
avoid querying the oracle for such an instance (which is
prohibited in UH or UH).

We therefore relax the definition of the unambiguous
hierarchy allowing to query the oracle outside its promise
set. However, the computation must return a correct an-
swer for all possible answers of the oracle to such queries.
We call this a loose access to the oracle. (A similar no-
tion was used by Chakaravarthy and Roy [4] for querying
prMA and prAM by deterministic computations, and it is
also implicitly used for probabilistic computations query-
ing prUP when one formulates Valiant–Vazirani’s lemma
as NP ⊆ RPprUP .) The resulting hierarchy prUH• contains
the two hierarchies UH and UH and is still contained
in PH. We prove that PH ⊆ BP · prUH• (the proof goes
along the same lines as Toda’s theorem; however, we have
to use oracles instead of Schöning’s dot-operators all the
way until the very end). Since BP · prUH• ⊆ BP · ⊕P, this is
a strengthening of the first part of Toda’s theorem. More-
over, our result is actually an equality; thus, we give a
natural characterization of PH as a probabilistic closure of
unambiguous computations.

Spakowski and Tripathi [19] asked3 whether UH and
UH collapse simultaneously with PH. Since our result is
proved level by level, it implies that a collapse of prUH•
to the i-th level collapses PH to the (i + 2)-th level. This,
however, leaves open the question whether a collapse of
UH or UH implies a collapse of prUH• (and PH).

In what follows, we give definitions and prove our main
theorem and its consequences. We conclude with a big list
of further directions.

2. Definitions

Promise problems A language is a subset of {0, 1}∗ , and a
promise problem is a pair (L, A), where L is a language, and
A ⊆ {0, 1}∗ is a promise set. To solve a promise problem,
we need to solve only its instances belonging to A.

For a class of languages C , we consider the class of
promise problems prC (slightly abusing the notation):

1 The authors of [1,3] attribute the initiation of this study to Hemachan-
dra.

2 This is similar to smart reductions used in [15] and was apparently
suggested in the context of unambiguous computations in [16,17].

3 They attribute this question to [2]; however, we did not find it there.

namely, we consider the definition of C and replace all
references to “every input” by references to “every input
in A”, where A is a promise set.

For example, one can formally define prBPP and prUP
as follows.

Definition 1. (L, A) ∈ prBPP ⇐⇒ there is a polynomial-
time probabilistic machine M such that ∀x ∈ A Pr{M(x) =
L(x)} ≥ 3/4.

Definition 2. (L, A) ∈ prUP ⇐⇒ there is a polynomial-time
nondeterministic machine M such that ∀x ∈ A the machine
M has at most one accepting path on x, and such x ∈ A
belongs to L iff there is such an accepting path.

Note that if a class has a semantic requirement (such as
bounded error or witness uniqueness), the machine needs
to satisfy it only on the promise set. Also note that nev-
ertheless if machines in the original class stop in polyno-
mial time, we can w.l.o.g. assume that the machines in the
new class still stop in polynomial time even outside the
promise set (if the computational model allows to add a
polynomial alarm clock).

However, if a class C of languages has syntactic require-
ments only (that is, the corresponding machines can be
recursively enumerated), the corresponding promise class
essentially equals C , i.e., prC = {(L, A) | L ∈ C, A ⊆ {0, 1}∗}.

When considering a class D of promise problems, we
assume it is closed downwards w.r.t. the promise set, i.e.,
if (L, A) ∈D and B ⊆ A, then (L, B) ∈D.

Loose oracle access We define loose oracle access to a
promise problem so that the oracle returns a correct an-
swer if a query is in the promise set and returns an arbi-
trary answer otherwise.

The notion is absolutely clear for P(O ,A) , that is, for
polynomial-time deterministic oracle Turing machines.
It can be applied also to other computational devices.
For example, L ∈ BPP(O ,A) ⇐⇒ there is a probabilis-
tic polynomial-time oracle machine M• that decides the
membership in L correctly with probability at least 3/4
irrespectively of the answers returned by the oracle on
queries that do not belong to A. In particular, the oracle
can return different answers for the same query outside A.

We will use the notion of loose access similarly not
just for bounded-error probabilistic oracle Turing ma-
chines (BPP•), but for other oracle machine types as well.
Throughout this paper, whenever we talk about oracle ac-
cess to promise problems, we mean the “loose” definition
by default. In order to avoid misunderstanding, we include
more formal definition for the two main classes of compu-
tations used in this paper.

Definition 3. Let (O , A) be a promise problem. A language
L ∈ BPP(O ,A) iff there is a probabilistic polynomial-time
oracle machine M• that uses r(n) random bits such that
for every input x of length n, there is a set R of strings
of length r(n) such that |R| ≥ 3

4 2r(n) and for every string
h ∈ R and for every language L′ that agrees with O on the
promise set A, ML′

(x, h) = L(x) (where M• is considered

Download English Version:

https://daneshyari.com/en/article/427115

Download Persian Version:

https://daneshyari.com/article/427115

Daneshyari.com

https://daneshyari.com/en/article/427115
https://daneshyari.com/article/427115
https://daneshyari.com

