
Information Processing Letters 113 (2013) 876–881

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Improved neural solution for the Lyapunov matrix equation
based on gradient search

Yuhuan Chen a, Chenfu Yi b,c,∗, Dengyu Qiao b

a Center for Educational Technology, Gannan Normal University, Ganzhou 341000, China
b Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
c School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 January 2013
Received in revised form 19 August 2013
Accepted 1 September 2013
Available online 9 September 2013
Communicated by X. Wu

Keywords:
Analysis of algorithms
Recurrent neural networks
Gradient search
Hierarchical identification principle
Energy function
Activation function

By using the hierarchical identification principle, based on the conventional gradient
search, two neural subsystems are developed and investigated for the online solution
of the well-known Lyapunov matrix equation. Theoretical analysis shows that, by using
any monotonically-increasing odd activation function, the gradient-based neural networks
(GNN) can solve the Lyapunov equation exactly and efficiently. Computer simulation
results confirm that the solution of the presented GNN models could globally converge
to the solution of the Lyapunov matrix equation. Moreover, when using the power-sigmoid
activation functions, the GNN models have superior convergence when compared to linear
models.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The solution of matrix equation is frequently encoun-
tered in many scientific and engineering fields. For exam-
ple, matrix square root is used for the design and appli-
cation for the Kalman filter [1,2]. Quadratic programming
is exploited for the solution of robot manipulators [3,4]
and communication [5]. Generally speaking, there are two
types of solutions to such problems. One type of solution is
the numerical algorithms performed on digital computers.
Usually, such numerical algorithms are of serial-processing
nature and may not be efficient enough for large-scale on-
line or real-time applications [6]. The second type of so-
lution to this problem is based upon parallel approaches,
where many methods have been developed and imple-
mented on specific architectures. The neural-dynamic ap-
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proach is now viewed as an effective parallel-processing
method and a powerful alternative for online computation
and optimization.

In recent years, due to the in-depth research in recur-
rent neural networks (RNN), a variety of computational
methods based on neural solvers have been proposed
to solve such numerical problems [7–12]. For example,
a novel linear matrix inequality-based stability criterion is
obtained by using Lyapunov functional theory to guarantee
the asymptotic stability of uncertain fuzzy recurrent neu-
ral networks with Markovian jumping parameters in [7].
Wang neural networks was proposed to solve the linear
simultaneous equation Ax = b [8]. A type of functional
neural networks is proposed in [9,10] for the efficient cal-
culation of eigenpairs of a matrix. Zhang neural networks
were proposed to solve the Sylvester matrix equation with
time-varying coefficient matrices in real-time [12]. More-
over, because of the parallel distributed nature of neural
networks and their hardware realizability [11,12,15], recur-
rent neural networks have been applied widely in many
scientific and engineering fields.
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In this paper, based on the hierarchical identification
principle [16–18], a gradient-based neural network (GNN)
is developed, exploited, and investigated for the Lyapunov
(or Lyapunov-like) matrix equations widely encountered in
many scientific and engineering fields, e.g., control the-
ory [7], linear algebra [16], and boundary value prob-
lems [19]. Theoretical proof shows that the improved neu-
ral solution can converge to the solution of such Lyapunov
equation. The presented illustrative example substantiates
the superior convergent performance of the given GNN
models as well.

The remainder of this paper is organized as follows. In
Section 2, GNN models are developed and analyzed for the
solution of A X = B , together with its convergence analysis.
By using the hierarchical identification principle, Section 3
presents two sub-neural models for the online solution of
the constant Lyapunov matrix equation AT X(t) + X(t)A =
−C . In Section 4, an example is presented and illustrated
for the demonstration the GNN models for such problem
solving. Some final remarks about this paper are given in
the last section.

Before ending this introductory section, the main con-
tributions of the letter are listed as follows.

(i) In this paper, a type of GNN model is developed
and investigated for solving the well-known Lyapunov
matrix equation. Theoretical results are also given to
show the effectiveness of such neural models.

(ii) By using the hierarchical identification principle, the
well-known Lyapunov equation is decomposed into
two sub-equations solved by the GNN models, respec-
tively.

(iii) An illustrative example is simulated, compared and
discussed to substantiate that the presented GNN
models could solve the Lyapunov matrix equation
with accuracy and effectiveness.

2. Gradient-based neural networks for linear matrix
equation A X = B

In this section, a gradient-based recurrent neural net-
works (GNN) is presented for the online solution of the
following linear matrix equation by using the least-square
method [20].

A X = B, (1)

where A ∈ Rn×n is a nonsingular constant matrix, matrix
B ∈ Rn×n is also time-invariant, and X(t) is an unknown
matrix to be solved. Then, such suggested neural models
would provide a solution for the Lyapunov matrix equation
to be solved in the ensuing section.

2.1. Construction of general GNN model

Generally speaking, a GNN model is constructed by
defining a scale-valued norm-based energy function. Evolv-
ing along the descent direction resulting from such energy
function, the GNN model could obtain the neural solution
of the problems; i.e., the minimum point is equal to the
solution of Eq. (1). Then, according to this classical gra-
dient search [8,11–14,16,21], a nonnegative scalar-valued

norm-based energy function ε(x) could be firstly defined
as follows.

ε(X) := ‖A X − B‖2
F = trace

(
(A X − B)T (A X − B)

)
, (2)

where Frobenius norm ‖A‖F := √
trace(AT A) [11,12,20,22],

of which the minimal point (it is also a global minima
here) equals the solution of the problem. In addition,
by the following basic differential properties of matrix
trace [11,22]:

∂ trace(B AC)

∂ A
= BT C T ,

∂ trace(B AT C)

∂ A
= C B, (3)

we have the differential equation with respect to X :

∂ε(X)

∂ X
= AT (A X − B).

Then, along with the descent direction of the negative
gratitude of such energy function, i.e.,

−∂ε(X)

∂ X
= −AT (A X − B).

Finally, the general linear GNN model for the linear matrix
equation (1) could be achieved as follows:

Ẋ(t) = −Γ
∂ε(X)

∂ X
= −γ

(
AT (A X − B)

)
, (4)

where X(t), starting from an initial condition X0 := X(0) ∈
Rn×n , is the activated neural solution corresponding to the
solution X∗(t) ∈ Rn×n of Eq. (1), the matrix-valued design
parameter (or say, learning rate) Γ could simply be γ I
with constant scalar γ > 0 and I being an identity ma-
trix. As an inductance parameter or the reciprocal of a
capacitance parameter, γ > 0 should be set as large as the
hardware permits and is generally used to scale the con-
vergence rate [23].

As inspired by Zhang et al.’s design method [12,15], we
could obtain the solution performance by using different
nonlinear activation arrays F(·) with each element listed
in the following form:

(i) linear activation function f (u) = u;
(ii) bipolar sigmoid activation function f (u) = (1 −

exp(−ξu))/(1 + exp(−ξu)) with ξ � 2;
(iii) power activation function f (u) = up with odd integer

p � 3 (note that linear activation function f (u) = u
can be viewed as a special case of power activation
function with power-index p = 1); and

(iv) power-sigmoid activation function

f (u) =
{

up, if |u| � 1,
1+exp(−ξ)
1−exp(−ξ)

· 1−exp(−ξu)
1+exp(−ξu)

, otherwise,

with suitable design parameters ξ � 2 and p � 3.

Therefore, by using the above-mentioned activation
function arrays, the linear GNN model (4) could be trans-
formed to the following general nonlinear dynamical equa-
tion:

Ẋ(t) = −Γ
∂ε(X)

∂ X
= −γ AT F(A X − B) (5)
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