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In (2012) [7], Kewen Zhao and Yue Lin introduced a new sufficient condition for pancyclic
graphs and proved that if G is a 2-connected graph of order n � 6 with |N(x) ∪ N(y)| +
d(w) � n for any three vertices x, y, w of d(x, y) = 2 and wx or wy /∈ E(G), then G is
4-vertex pancyclic or G belongs to two classes of well-structured exceptional graphs. This
result generalized the two results of Bondy in 1971 and Xu in 2001. In this paper, we first
prove that if G is a 2-connected graph of order n � 6 with |N(x)∪ N(y)|+d(w) � n for any
three vertices x, y, w of d(x, y) = 2 and wx or wy /∈ E(G), then each vertex u of G with
d(u) � 3 is 5-pancyclic or G = Kn/2,n/2, and we also show that our result is best possible.
On the basis of this result, we prove that there exist at least two pancyclic vertices in G or
G = Kn/2,n/2. In addition, we give a new proof of a result in Cai (1984) [2].

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider only finite undirected graphs
with no loops or multiples. Let G = (V (G), E(G)) be a
graph. We denote the number of vertices of G by |V (G)|.
A subdigraph induced by a subset X ⊆ V (G) is denoted by
G[X]. We also write G − X for G[V (G) − X].

For a vertex x and a subgraph H of G , the set of all
vertices being adjacent to x in H is denoted by NH (x).
Furthermore, dH (x) = |NH (x)| is degree of x in H . We use
δ(G) = min{dG (x): x ∈ V (G)} to stand for the minimum de-
gree of G . When there is no confusion possible, we use
N(x), d(x) and δ instead of NG(x), dG(x) and δ(G), respec-
tively. Let R , H be two subgraphs of G . We use NH (R) to
denote the set of all vertices in H being adjacent to some
vertex in R .

An l-cycle is a cycle of length l. We call a graph G
Hamiltonian if it contains a cycle of length |V (G)|. A graph
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G is called to be pancyclic if G contains cycles of length
from 3 to |V (G)|. A vertex is said to be k-pancyclic in a
graph G , if it belongs to an l-cycle for all k � l � |V (G)|.
For k = 3, we also say that the vertex is pancyclic.

In 1960, Ore [5] introduced degree sum condition for a
graph G to be Hamiltonian. In 1971, Bondy considered the
above Ore’s condition for pancyclic graphs and proved that

Theorem 1.1. (See Bondy [1].) If G is a 2-connected graph of or-
der n with d(x)+d(y) � n for each pair of non-adjacent vertices
x, y in G, then G is pancyclic or G = Kn/2,n/2.

In 1984, Xiaotao Cai considered the above Ore’s condi-
tion for vertex-pancyclic graphs and proved that

Theorem 1.2. (See Cai [2].) If G is 2-connected graph of order
n � 4 with d(x) + d(y) � n for each pair of non-adjacent ver-
tices x, y in G, then G is 4-vertex pancyclic or G = Kn/2,n/2.

In 1989, Lindquester [4] introduced the condition on
neighborhood union of each pair vertices at distance 2
for a graph G to be Hamiltonian. In 2001, Xu generalized
Lindquester’s result and proved the following pancyclic re-
sult.
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Theorem 1.3. (See Xu [6].) If G is a 2-connected graph of order
n � 6 with |N(x)∪ N(y)| + δ � n for each pair of non-adjacent
vertices x, y of d(x, y) = 2 in G, then G is pancyclic or G =
Kn/2,n/2.

Lin and Song [3] improved Theorem 1.3 and proved that

Theorem 1.4. (See Lin and Song [3].) If G is a 2-connected graph
of order n � 6 with |N(x) ∪ N(y)| + δ � n for each pair of non-
adjacent vertices x, y of d(x, y) = 2 in G, then G is 4-vertex
pancyclic or G = Kn/2,n/2.

Recently, Kewen Zhao and Yue Lin presented a new
sufficient condition and proved the following Theorem 1.5
which generalized Theorem 1.1 and Theorem 1.3.

Theorem 1.5. (See Zhao and Lin [7].) If G is a 2-connected graph
of order n � 6 with |N(x) ∪ N(y)| + d(w) � n for any three
vertices x, y, w of d(x, y) = 2 and wx or wy /∈ E(G), then G is
4-vertex pancyclic or G belongs to two classes of well-structured
exceptional graphs.

In this paper, let G be as in Theorem 1.5, we first prove
that each vertex u of G with d(u) � 3 is 5-pancyclic or
G = Kn/2,n/2. We also show that our result is best possible.
On the basis of this result, we prove that there exist at
least two pancyclic vertices in G or G = Kn/2,n/2, and we
also provide a new proof of Theorem 1.2.

2. Main results

Below, we use Cl to stand for an l-cycle for any inte-
ger l.

Lemma 2.1. Let G be as in Theorem 1.5 and G �= Kn/2,n/2. Then
the following hold.

(1) G contains vertices with degree greater than 2.
(2) G has a 3-cycle.
(3) Let u be a vertex of G with d(u) � 3. If u is in a C3 , then u

is in C3 , C4 or C5 , C6 . If u is not in a C3 , then u is in C4 , C5 .

Proof. (1) If d(u) = 2 for each u ∈ V (G), then G is a cycle
Cn = x1x2 . . . xnx1. Since n � 6, we have |N(x1) ∪ N(x3)| +
d(x5) � n − 1, a contradiction. Therefore, G contains ver-
tices with degree greater than 2.

Below, we prove (2) and (3). Let u be a vertex in G with
d(u) � 3.

Case 1: u is in a C3.
In this case, G has a 3-cycle. Let C3 = uv wu be a

3-cycle containing the vertex u. Since n � 6 and G is
2-connected, we have that the degree of each of u, v, w
is not less than 2 and there exist at least two vertices in
u, v, w with degree greater than 2. Note that d(u) � 3.
Without loss of generality, we assume that d(v) � 3,
d(w) � 2. Let B = V (G − N(u) − {u}).

Suppose that u is not a 4-cycle in G . Clearly, we have
G[N(u)] has not path of length 2 and each pair of ver-
tices in N(u) has not common neighbor in G − {u}. By
d(v) > 2, we have NB(v) �= ∅. Let v1 ∈ NB(v). Since G is

2-connected and d(u) � 3, there exists at least one vertex
z ∈ N(u)\{v, w} such that NB(z) �= ∅. Let z1 ∈ NB(z).

Subcase 1.1: d(w) = 2.
If there is a vertex in B which is not adjacent to v1,

then |N(u) ∪ N(v1)| + d(w) � d(u) + (|B| − 2) + 2 < n,
a contradiction. So each of vertices in B − {v1} is adja-
cent to v1. Now, we have v1z1 ∈ E(G) and d(v1, z) = 2.
Since u is not in a 4-cycle, we have |N(u) ∩ N(z)| � 1.
When |N(u) ∩ N(z)| = 0, we have |N(z) ∪ N(v1)| + d(w) �
(|B| + 1) + 2 = |B| + 3 � |B| + |N(u)| < n, a contradiction.
When |N(u) ∩ N(z)| = 1, let y ∈ N(u) ∩ N(z). It is easy to
see that y /∈ {v, w} and |N(u)| � 4. Now, we have |N(z) ∪
N(v1)| + d(w) � (|B| + 2) + 2 = |B| + 4 � |B| + |N(u)| < n,
a contradiction. Therefore, in this case, we have that u is
in a C4.

Subcase 1.2: d(w) > 2.
In this case, we will prove that u is in C5 and C6. If

z1 and each of {v, w} have not common neighbor, then
|N(u) ∪ N(z1)| + d(v) � n − (d(v) − 2) − (d(w) − 2) −
|{u, z1}| + d(v) = n − d(w) + 2 < n, a contradiction. There-
fore, there exist two vertices, say v1 and w1, such
that v1 ∈ NB(v) and w1 ∈ NB(w) and z1 is adjacent to
v1 or w1. Now, uv v1z1zu or uw w1z1zu is a C5 and
uw v v1z1zu or uv w w1z1zu is a C6 containing the ver-
tex u.

Case 2: u is not in any C3.
If u is not in a C3, then N(u) has not two adjacent ver-

tices. We will prove that G has a 3-cycle and u is contained
in C4, C5. Let B = V [G − N(u) − {u}] and v, w, z ∈ N(u).

It is easy to see that there exist two vertices in N(u)

that have a common neighbor in B . Otherwise, we have
|N(v) ∪ N(w)| + d(z) = |N(v) ∪ N(w)| + |N(z)| = |N(v) ∪
N(w) ∪ N(z)| + |{u}| � |B| + |{u}| + |{u}| = |B| + 2 < n,
a contradiction. Assume without loss of generality that
w, z are adjacent to a vertex y in B . Now, uwyzu is a C4

containing the vertex u.
Below, we only need to prove that G has a 3-cycle and

u is contained in a C5.
By d(w, z) = 2 and 2|B| + 2 � |N(w) ∪ N(z)| + d(v) �

n = |B| + d(u) + 1, we can get |B|� d(u) − 1.
Subcase 2.1: |B| = d(u) − 1.
In this case, we claim that each vertex of N(u) must

be adjacent to each vertex of B . (Otherwise, there is a
vertex, say v , that is not adjacent to some vertex in B ,
then we can check that |N(w) ∪ N(z)| + d(v) � |B| + 1 +
((|B| − 1) + 1) = 2|B| + 1 = |B| + (d(u) − 1) + 1 < n, a con-
tradiction.) If any two vertices in B are not adjacent, then
G = Kn/2,n/2, a contradiction. So there exist two adjacent
vertices x, y in B , and clearly, vxyv is a 3-cycle of G and
uvxywu is a C5 containing the vertex u.

Subcase 2.2: |B| � d(u).
If B − NB(N(u)) �= ∅, then there must exist a vertex in

B − NB(N(u)), say x, and a vertex in N(u), say v , such
that d(v, x) = 2. However, we have |N(v) ∪ N(x)| + d(u) �
|B| − 1 + 1 + d(u) < n, a contradiction.

Suppose now that B = NB(N(u)). We claim that for any
vertex in N(u), there exist at least two vertices in B that
are adjacent to it. (Otherwise, assume that there is a vertex
v ∈ N(u), such that there exists at most one vertex in B
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