Information Processing Letters 113 (2013) 337-344

www.elsevier.com/locate/ipl

Contents lists available at SciVerse ScienceDirect

Information Processing Letters

Exploiting independent subformulas: A faster approximation

scheme for #k-SAT

Manuel Schmitt*, Rolf Wanka

® CrossMark

Department of Computer Science, University of Erlangen-Nuremberg, CauerstrafSse 11, 91058 Erlangen, Germany

ARTICLE INFO

ABSTRACT

Article history:

Received 10 September 2012

Received in revised form 22 February 2013
Accepted 25 February 2013

Available online 27 February 2013
Communicated by J. Toran

Keywords:

Algorithms

Analysis of algorithms
Randomized algorithms
#k-SAT

Satisfiability

We present an improvement on Thurley’s recent randomized approximation scheme for
#k-SAT where the task is to count the number of satisfying truth assignments of a Boolean
function @ given as an n-variable k-CNF. We introduce a novel way to identify independent
substructures of @ and can therefore reduce the size of the search space considerably. Our
randomized algorithm works for any k. For #3-SAT, it runs in time O(¢~2-1.51426"), for
#4-SAT, it runs in time O (s~2 - 1.60816"), with error bound &.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Background. The satisfiability problem (SAT) is one of the
classical and central problems in algorithm theory. Its
prominent role in Computer Science has even been com-
pared [1] to the one that Drosophila (the fruit fly) has in
Genetics. Given a Boolean formula & in conjunctive nor-
mal form (CNF) on n variables with m clauses, it has to be
determined whether there is a satisfying assignment for @
(and in this case, to determine one) or not. If every clause
of @ has length at most k, @ is called a k-CNF and the
problem is dubbed k-SAT. It is well known (for a compre-
hensive overview, see [2]) that k-SAT is NP-complete for
any k > 3, and that it can be solved in time linear in the
input length for k =2 [3]. So it is generally assumed that
there is no polynomial time algorithm solving k-SAT for
k > 3. In particular, 3-SAT has attracted much attention be-
cause of its “borderline” status.

* Corresponding author. Tel.: +49 9131 85 25387; fax: +49 9131 85
25149.
E-mail addresses: manuel.schmitt@cs.fau.de (M. Schmitt),
rwanka@cs.fau.de (R. Wanka).

0020-0190/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.02.013

There is a rich history of developing both determinis-
tic and randomized algorithms with running time o(2")
solving k-SAT. The currently fastest deterministic algorithm
for 3-SAT runs in time! 0*(1.3303") [4], the fastest ran-
domized algorithm has a running time of 0*(log(8~!) -
1.30704™) [5]. In the randomized setting, the use of §
means the following: If @ is not satisfiable, the algorithm
returns the correct answer. If @ is satisfiable, it returns
with probability 1 — § a satisfying assignment. Table 1
presents all best running times currently known to solve
k-SAT.

For many combinatorial problems including k-SAT, it is
often not only important to determine one solution (if it
exists), but also to determine the number of all different
solutions. A famous example from statistical physics is the
computation of the number of configurations in monomer-
dimer systems (for an overview, see [6]). The complexity
class that corresponds to these counting problems is #P, and
#SAT, the problem to determine the number of satisfying

1 In this context, the notion 0*(.) is commonly used to suppress factors
that are of size 2°™.,


http://dx.doi.org/10.1016/j.ipl.2013.02.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:manuel.schmitt@cs.fau.de
mailto:rwanka@cs.fau.de
http://dx.doi.org/10.1016/j.ipl.2013.02.013
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ipl.2013.02.013&domain=pdf

338 M. Schmitt, R. Wanka / Information Processing Letters 113 (2013) 337-344

Table 1

Previous and new results for k-SAT and #k-SAT where the input k-CNF has n variables and m clauses. The times are given in 0*(.) notation. B is the
base-2 logarithm of the base of the running time in column “k-SAT rand”. For definition of 1, see Section 2.2; vy is the largest root of 1 — 22k + zk+1 = 0;

21/C=B0 < o,

k-SAT #k-SAT
deterministic rand Br exact rand, prev. this paper
k=2 n+m [3] - - 1.2377" [8] - -
k=3 1.3303" 14] 1.30704" (5] 0.3864 1.6423" 9] 1.5366" [10] 1.51426"
k=4 1.5 [11] 1.46899" (5] 0.5548 1.9275" [12,13] 1.6155" [10] 1.60816"
k>5 (2= yn [11] 2(1—pi/(k=1)-n [14] 1- vl [13] 21/@=pon [10] of (Section 5.3)

assignments, is well-known to be #P-complete. More ex-
actly, let #k-SAT denote the problem to determine #, i.e.,
for input @ being a k-CNF, the number of satisfying assign-
ments. Then, it is known [7] that #k-SAT is #P-complete
for k > 2.

Topic of this work. In the area of combinatorial counting
problems, there is also the problem of approximating the
wanted number. In particular, there is the task to develop
so-called randomized approximation schemes that receive as
input @ and an arbitrarily small bound ¢ on the maxi-
mum admissible error and that compute with some fixed
probability greater 1/2 an g-estimate of #& (for exact def-
initions, see Section 2). In a recent paper, Thurley [10]
presents such a randomized approximation scheme for #k-
SAT that has, for k = 3, running time O*(e~2 - 1.5366"),
and for k =4, 0*(¢=%-1.6155"). A detailed description of
Thurley’s algorithm is presented in Section 2. Table 1 also
presents all best running times currently known to solve
#k-SAT.

A different approach by Impagliazzo et al. [15] leads to
a randomized Las Vegas algorithm for #k-SAT that always
returns the exact solution and has expected running time
0*(2(1-1/G0k)ny Note that for any k, Thurley’s algorithm
is faster than this method.

New results. We present a randomized approximation
scheme for #k-SAT that takes the input k-CNF much more
into account than Thurley’s algorithm. In particular, we
present a method that determines a large set of maxi-
mal independent subformulas of &. lLe., the subformulas
have no variables in common and can therefore be treated
independently. As they are maximal, they convert the re-
maining clauses into clauses of length k — 1. Hence, the
search space is substantially reduced. Our scheme, which
works for any #k-SAT instance, has for #3-SAT running
time O(s~2-1.51426"), and for #4-SAT, it works in time
0(s7%-1.60816"). Note that our scheme is for all k faster
than Thurley’s scheme.

Organization of paper. In the next section, we define the
necessary terms, and we give a comprehensive description
of Thurley’s randomized approximation scheme. In Sec-
tion 3, we present a first improvement that exploits single
clauses. Generalizing this approach and building upon each
other, we present further improvements based on large
sets of maximal independent clauses (Section 4), and on
large sets of maximal independent subformulas (Section 5).

(Z1V z2) A (B2 V 3)

Fig. 1. (a) Elimination tree and (b) a 3-cut for @ = (X1 V x2) A (X2 V X3),
due to the elimination order (x, X1, x3). The sum of the leaves is #& = 4.
Satisfiable nodes are boxed. Note that #& can already be computed from
the nodes on level 1.

2. Elimination trees, Monte Carlo counting, and Thurley’s
algorithm

Let @ be a k-CNF, i.e., a Boolean function given in con-
junctive normal form with n different variables xq, ..., x,
on m different clauses such that every clause has length at
most k. For an arbitrary Boolean formula ¢, let Var(¢) de-
note the variables that occur in ¢. Let b : Var(¢) — {0, 1}
be a partial assignment of truth values to the variables
in ¢. By ¢, we denote the formula we obtain from ¢ by
fixing in ¢ the variables according to b.

There is a nice interpretation of #k-SAT in terms of
complete binary trees of height n (i.e., having levels
0,...,n) that is sometimes used in the context of count-
ing. An elimination tree for a k-CNF @ can be defined as
follows. Fix an elimination order (y1,...,Yyn) of the vari-
ables. Every node ¢ of the tree corresponds to a Boolean
formula. The root (on level 0) of the tree is @. Every node
¢ on level i, 0 <i < n, has two children: One child is ¢y,—o,
the other one is ¢y,—1. So a path from the root to a leaf
corresponds to an assignment to the variables, and the for-
mula at a leaf is either 0 or 1. #& is the number of leaves
marked 1. The mark 1 is additionally broadcast to all in-
ternal nodes on a path from a 1-leaf to the root. Le, it is
visible on every node ¢ whether ¢ is satisfiable or not. For
a small example, see Fig. 1(a).

Let ¢ be a positive integer. An ¢-cut of an elimi-
nation tree is an arbitrary connected subtree that con-
tains the root, only 1-nodes, and has ¢ leaves (w.r.t. the
subtree). For an example, see Fig. 1(b). An ¢-cut con-
tains at most n - £ nodes. From determining an {-cut,
immediately #& > ¢ follows. Note that the elimination
order significantly influences the moment when in the



Download English Version:

https://daneshyari.com/en/article/427213

Download Persian Version:

https://daneshyari.com/article/427213

Daneshyari.com


https://daneshyari.com/en/article/427213
https://daneshyari.com/article/427213
https://daneshyari.com/

