
Information Processing Letters 113 (2013) 350–353

Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Interconnections between classes of sequentially
compositional temporal formulas

Ben Moszkowski

Software Technology Research Laboratory, De Montfort University, Leicester, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 November 2012
Received in revised form 30 January 2013
Accepted 6 February 2013
Available online 8 February 2013
Communicated by J.L. Fiadeiro

Keywords:
Formal methods
Interval Temporal Logic
Compositionality

Interval Temporal Logic (ITL) is an established formalism for reasoning about time periods.
We elucidate here the relationship between various kinds of compositional propositional
ITL formulas. Several are closed under conjunction and the standard temporal operator
known as “box” and “always”.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Intervals and discrete linear state sequences offer a
compellingly natural and flexible way to model compu-
tational processes involving hardware or software. Interval
Temporal Logic (ITL) [1], an established formalism for rea-
soning about such phenomena, has operators for sequen-
tially combining formulas. If A and B are formulas, so are
A;B (“chop”) and A∗ (“chop-star”). These are related to the
concatenation and Kleene star operators for regular expres-
sions. Time is modelled as in conventional discrete linear-
time temporal logic using finite and infinite sequences of
one or more states.

We recently introduced and investigated 2-to-1 formu-
las for compositional reasoning [2]. A formula A is 2-to-1
if the implication (A;A) ⊃ A is valid, so if two portions of
a system ensure such a formula’s behaviour, then their se-
quential composition is guaranteed to as well. This work
builds on our earlier compositional techniques surveyed
in [3] to facilitate inference rules for combining concur-
rent systems sequentially and in parallel. A sample rule is
later presented in Section 3. The 2-to-1 formulas are closed
under conjunction and the conventional temporal opera-

E-mail address: benm@dmu.ac.uk.

tor � (“always”) which examines suffix subintervals. This
helps modularly obtain 2-to-1 safety and liveness formulas
such as the standard temporal formulas �p (“always p”)
and �(p ⊃ �q) (“p always leads to q”), where p and q
are propositional variables. The propositional version of ITL
(PITL) used here to formalise 2-to-1 formulas is decidable
and has a complete axiomatisation [4], but our results are
also applicable to first-order ITL (along the lines of [3]).

The versatile class of 2-to-1 formulas has useful sub-
classes (e.g., ∗-to-1: A∗ ⊃ A) and other variants, also
closed under conjunction and sometimes closed under �
as well. Our presentation here mainly concerns intercon-
nections between these to elucidate the nature of such
formulas and obtain new ones. We systematically and in-
crementally apply properties proved about some formulas
to later proofs for others to avoid redundant reasoning.

2. Propositional Interval Temporal Logic

We now describe the version of (quantifier-free) PITL
used here. More about PITL can be found in [4] (see
also [1] and the ITL web pages [5]).

Here is a BNF syntax of PITL formulas, with p any
propositional variable:

A ::= true | p | ¬A | A ∨ A | skip | A;A | A∗. (1)

0020-0190/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.02.005

http://dx.doi.org/10.1016/j.ipl.2013.02.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:benm@dmu.ac.uk
http://dx.doi.org/10.1016/j.ipl.2013.02.005
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ipl.2013.02.005&domain=pdf

B. Moszkowski / Information Processing Letters 113 (2013) 350–353 351

Table 1
Some useful derived PITL operators.

© A
def≡ skip;A Next more

def≡ © true Two or more states

empty
def≡ ¬more One state A?

def≡ empty ∧ A One state with test

inf
def≡ true; false ω states finite

def≡ ¬inf Finite interval

�A
def≡ finite;A Eventually �A

def≡ ¬�¬A Henceforth (always)

fin A
def≡ �(empty ⊃ A) Final state (weak) Aω def≡ inf ∧ (finite ∧ A)∗ Chop-omega

A
def≡ A;true Initial (prefix) subinterval A

def≡ ¬ ¬A All initial (prefix) subintervals

Boolean operators false, A ∧ B , A ⊃ B and A ≡ B are de-
fined as usual.

Time within PITL is modelled by discrete, linear state
sequences. The set of states Σ is the power set 2V, where
V is the set of propositional variables. Each state in Σ

therefore sets every propositional variable p,q, . . . to true
or false. The associated (standard) version of PITL with
such state-based variables (instead of interval-based ones)
is called local PITL. An interval σ is any element of Σ+ ∪Σω

and has states σ 0, σ 1,
The notation σ |	 A, defined shortly by induction on

formula A’s syntax, denotes that interval σ satisfies A. If
all intervals satisfy A, denoted |	 A, it is valid. Below are
the semantics of the first five PITL constructs in (1):

σ |	 true for any σ

σ |	 p iff p ∈ σ 0 (initially p)

σ |	 ¬A iff σ �|	 A

σ |	 A ∨ B iff σ |	 A or σ |	 B

σ |	 skip iff σ ∈ Σ2 (two states).

The cases below for chop and chop-star involve subinter-
vals:

– Chop: σ |	 A;B iff for some σ ′ and σ ′′ , σ ′ |	 A and
σ ′′ |	 B

or σ ∈ Σω and σ |	 A,

where σ ′ ∈ Σ+ is a finite prefix subinterval of σ (per-
haps even σ itself if σ ∈ Σ+), and σ ′′ is the adjacent
suffix subinterval of σ with one shared state (i.e., the
last state of σ ′). Chop here is weak (like the weak
version of the temporal operator Until) for potentially
nonterminating programs which ignore B . Strong chop
(and chop-star) is derivable.

– Chop-star: σ |	 A∗ iff one of the following holds:
(1) σ has only one state (i.e., σ ∈ Σ). (2) σ either
itself satisfies A or can be split into a finite num-
ber of subintervals which share end-states (like chop)
and all satisfy A. (3) σ ∈ Σω and can be split into
ω finite-length intervals sharing end-states (like chop)
and each satisfying A.

Consider a sample 5-state interval σ with the following
alternating values for the variable p: p,¬p, p,¬p, p. Here
are formulas satisfied by σ : p, skip;¬p, p ∧ (true;¬p)

and (p ∧ (skip; skip))∗ . For instance, skip;¬p is true since
σ ’s prefix subinterval σ 0σ 1 satisfies skip and the adjacent
suffix subinterval σ 1. . . σ 4 satisfies ¬p because p �∈ σ 1.

The formula (p ∧ (skip; skip))∗ is true since σ ’s subinter-
vals σ 0σ 1σ 2 and σ 2σ 3σ 4 both satisfy p ∧ (skip; skip). The
interval σ does not satisfy the formulas ¬p, skip; p and
true; (¬p ∧ ¬(true; p)).

Table 1 shows useful derived PITL operators.
Let w and w ′ denote state formulas with no temporal

operators. Let PTL denote the PITL subset of conventional
Propositional Linear-Time Temporal Logic with just the (de-
rived) operators © and � in Table 1.

Here are some sample valid PITL formulas:

A ⊃ A skip∗ inf ≡ �more

(w ∧ A);B ≡ w ∧ (A;B) A ≡ (empty;A).

As another example, the equivalence (w ∧ A) ≡ (empty ∧
w);A is valid since for any interval σ , σ |	 w ∧ A iff σ ’s
first state satisfies w and σ |	 A.

3. 2-to-1 formulas

A PITL formula A is 2-to-1 iff (A;A) ⊃ A is valid. For ex-
ample, true, p, empty and B? (for any B) are 2-to-1, as are
PTL formulas �p and �(p ⊃ �q), but not skip. The next
sample semantic inference rule uses a 2-to-1 formula A
with systems Sys and Sys′ and pre- and post-conditions w ,
w ′ and w ′′:

|	 w ∧ Sys ⊃ A ∧ fin w ′,
|	 w ′ ∧ Sys′ ⊃ A ∧ fin w ′′

⇒ |	 w ∧ (Sys; Sys′) ⊃ A ∧ fin w ′′.

We now discuss properties of 2-to-1 formulas. This
class is later used with other classes such as ∗-to-1 for-
mulas (i.e., |	 A∗ ⊃ A) for iteration in Section 4. Our
systematic analysis incrementally obtains formulas in the
classes. Included are many PTL formulas for which it also
seems computationally feasible to check membership in
the classes, but this is left for future work.

Theorem 1. (See Moszkowski [2].) 2-to-1 formulas are closed
under ∧ and �.

Proof. Here is a chain of valid implications for ∧: (A ∧
B); (A ∧ B) ⊃ (A;A) ∧ (B;B) ⊃ (A ∧ B). For �, if σ |	
(�A); (�A), then every suffix of σ satisfies A;A or A and
hence A so σ |	 �A. Therefore, |	 (�A); (�A) ⊃ �A. �

The �-closure for 2-to-1 formulas nicely generalises
to the next semantic inference rule for any C and C ′:
|	 (C ′; C) ⊃ C ⇒ |	 ((�C ′);�C) ⊃ �C .

Download	English	Version:

https://daneshyari.com/en/article/427215

Download	Persian	Version:

https://daneshyari.com/article/427215

Daneshyari.com

https://daneshyari.com/en/article/427215
https://daneshyari.com/article/427215
https://daneshyari.com/

