Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Information Processing Letters

www.elsevier.com/locate/ipl

Finding outer-connected dominating sets in interval graphs $\dot{\mathbf{x}}$

Chiou-Jiun Lin a, Jia-Jie Liu b, Yue-Li Wang ^a*,*[∗]

^a *Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan*

^b *Department of Information Management, Shih Hsin University, Taipei, Taiwan*

A R T I C L E I N F O A B S T R A C T

Article history: Received 24 September 2014 Received in revised form 6 July 2015 Accepted 21 July 2015 Available online 28 July 2015 Communicated by Ł. Kowalik

Keywords: Graph algorithms Outer-connected domination Dominating sets Proper interval graphs Interval graphs

1. Introduction

All graphs considered in this paper are simple, finite, and undirected. Let $G = (V, E)$ be a connected graph with vertex set *V* and edge set *E*, where $|V| = n$ and $|E| = m$. For any vertex $v \in V$, the *open neighborhood* of *v* is the set $N_G(v) = \{u \in V : uv \in E\}$. The *closed neighborhood* of *v* is $N_G[v] = N_G(v) \cup \{v\}$. For simplicity, $N_G(v)$ and $N_G[v]$ are simply written as $N(v)$ and $N[v]$, respectively, if no confusion is possible.

Definition 1.1. A set $D \subseteq V$ is a *dominating set* if every vertex not in *D* is adjacent to (is dominated by) at least one vertex in *D*. A dominating set *S* is an *outer-connected dominating set*, abbreviated as *OCD*-set, if the subgraph induced by *V* \ *S* is connected. The *outer-connected domination number*, denoted by $\tilde{\gamma}_c(G)$, is the cardinality of a minimum

Corresponding author at: Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan. *E-mail address:* ylwang@cs.ntust.edu.tw (Y.-L. Wang).

<http://dx.doi.org/10.1016/j.ipl.2015.07.008>

0020-0190/© 2015 Elsevier B.V. All rights reserved.

An outer-connected dominating set in a graph $G = (V, E)$ is a set $S \subseteq V$ such that each vertex not in *S* is adjacent to at least one vertex in *S* and the subgraph induced by $V \setminus S$ is connected. In Keil and Pradhan (2013) [\[6\],](#page--1-0) Keil and Pradhan gave a linear-time algorithm for finding a minimum outer-connected dominating set in a proper interval graph. In this paper, we generalize their result to find a minimum outer-connected dominating set in an interval graph in linear time.

© 2015 Elsevier B.V. All rights reserved.

OCD-set of *G*. The *outer-connected domination problem* is to find a minimum *OCD*-set of a graph *G*.

The outer-connected domination problem in graphs was introduced by Cyman in $[3]$ and subsequently studied in [\[1,5,6,8\].](#page--1-0) The outer-connected domination problem is NP-complete for bipartite graphs [\[3\],](#page--1-0) doubly chordal graphs [\[6\],](#page--1-0) and undirected path graphs [\[6\].](#page--1-0)

A graph $G = (V, E)$ is an *interval* graph if $V = \{1, 2, \ldots, E\}$ \ldots , *n*} and there is an interval representation $\mathcal{I}(G)$ such that each vertex *i* in *V* corresponds to an interval *Ii* in I (*G*) and *(i, j*) ∈ *E* if and only if I ^{*i*} and I ^{*j*} intersect in the interval representation. We also use $\mathcal I$ to denote $I(G)$ when only one graph is mentioned. There exists an $O(n + m)$ -time algorithm to recognize an interval graph and construct its interval model by using PQ-trees [\[2\].](#page--1-0) A *proper interval graph* is an interval graph that has an intersection model in which no interval properly contains another. In $[6]$, Keil and Pradhan presented a linear-time algorithm for finding a minimum OCD-set in a proper interval graph. In this paper, we generalize their result to find a minimum outer-connected dominating set in an interval graph in linear time.

CrossMark

 \hat{X} This work was supported in part by the National Science Council of Republic of China under contracts MOST 103-2221-E-128-002 and NSC 101-2221-E-011-038-MY3.

Fig. 1. An interval graph *G* and its corresponding $\mathcal{I}(G)$.

The rest of this paper is organized as follows. In Section 2, some preliminaries are introduced. We also describe the reason why the algorithm proposed by Keil and Pradhan in [\[6\]](#page--1-0) cannot be applied to finding a minimum OCD-set in interval graphs. In Section [3,](#page--1-0) we introduce our proposed algorithm for solving the outer-connected domination problem in interval graphs. Finally, concluding remarks are given in Section [4.](#page--1-0)

2. Preliminaries

Given an interval graph $G = (V, E)$, assume that $\mathcal I$ is its corresponding interval representation. Let *Ii* corresponding to *i* ∈ *V* be an interval in I . Let a_i and b_i be the two endpoints of I_i on a single line *L*, where $a_i < b_i$ for $1 \leq i \leq n$. Accordingly, let $I_i = [a_i, b_i]$. Without loss of generality, we may assume that no two distinct intervals in I have the same endpoints. Thus line *L* can be labeled with consecutive integers 1*,* 2*,...,* 2*n* from left to right such that $\bigcup_{i=1}^{n} \{a_i, b_i\} = \{1, 2, ..., 2n\}$. Assume also that all intervals are labeled in increasing order of their left endpoints, namely $a_1 < a_2 < \cdots < a_n$. Figs. 1(a) and 1(b) depict an interval graph and its corresponding interval representation \mathcal{I} , respectively.

A vertex $v \in V$ is a *simplicial vertex* of G if $N[v]$ is a clique of *G*. An ordering $\alpha = (v_1, v_2, \dots, v_n)$ is a *perfect elimination ordering* (PEO for short) of *G* if v_i is a simplicial vertex of $G_i = G[\{v_i, v_{i+1}, \ldots, v_n\}]$ for all $i, 1 \leq i \leq n$, where *G*[*S*] denotes the subgraph induced by the vertices in *S*. A PEO $\alpha = (v_1, v_2, \ldots, v_n)$ of a chordal graph is a *bicompatible elimination ordering* (BCO for short) if α^{-1} = $(v_n, v_{n-1}, \ldots, v_1)$, i.e., the reverse of α , is also a PEO of *G*.

Theorem 2.1. *(See [\[4\].](#page--1-0)) A graph G has a BCO if and only if it is a proper interval graph.*

In $[6]$, the algorithm proposed by Keil and Pradhan is based on BCO to traverse the vertices in a proper interval graph *G*. By Theorem 2.1, their algorithm cannot be applied to finding a minimum OCD-set in an interval graph.

A vertex *v* is a *cut vertex* of a connected graph *G* if the number of connected components is increased after removing *v*.

Observation 2.2. *If vertex u is a non-cut vertex in an interval graph G, then the induced subgraph of N(u) is connected.*

Definition 2.3. A cut vertex *u* is called a *chained cut-vertex* if the degree of vertex *u* is 2 and its two adjacent vertices are also cut vertices. A *chainless component* of *G* is

Fig. 2. Chainless components of the graph in Fig. 1.

a maximal subgraph of *G* in which there is no chained cut-vertex. The number of chainless components in *G* is denoted by *c(G)*. A vertex in a chainless component *H* is called a *chained end-vertex* if it is a chained cut-vertex in *G*.

Note that each chained end-vertex belongs to exactly two distinct chainless components. The set containing all chained end-vertices in chainless component *H* is the *chained-end set* of *H*, denoted by CE*(H)*.

Example 1. We use the graph in Fig. 1 to illustrate chainless components. Since only vertex 7 is a chained cutvertex, we have two chainless components. Thus $c(G) = 2$ (see Fig. 2).

Lemma 2.4. *For any* OCD*-set M of a graph G, all vertices in V* \ *M are in the same chainless component.*

Proof. Suppose to the contrary that there exist two vertices $u, v \in V \setminus M$ which are in two different chainless components *Hi* and *H ^j*, respectively. Clearly, every cut vertex in any path from *u* to *v* cannot be in *M*; otherwise, vertices *u* and *v* will be disconnected after the vertices in *M* are removed. Let *s* be a chained cut-vertex in a path from *u* to *v*, and *r* and *t* be its two adjacent cut vertices. Since *s,r*, and *t* are not in *M*, this implies that *s* is not dominated by any vertex in *M*, a contradiction. This completes the proof. \square

Definition 2.5. A *relaxation outer-connected dominating set*, abbreviated as *ROCD*-set, of a chainless component *H* is a set *S* ⊆ *V*(*H*) such that every vertex in *V*(*H*) \ (*S* ∪ *CE*(*H*)) is adjacent to at least one vertex in *S* and the subgraph induced by $V(H) \setminus S$ is connected. The *relaxation* outer*connected domination number*, denoted by $\tilde{\gamma}_{rc}(H)$, is the cardinality of a minimum *ROCD*-set of *H*.

Note that, in an ROCD-set, all chained end-vertices might not be dominated; however, each of them can be an element in an ROCD-set.

Lemma 2.6. For a graph *G*, *it* holds that $\tilde{\gamma}_c(G)$ = $\min_{1 \le i \le c(G)} \{ |V(G) \setminus V(H_i)| + \tilde{\gamma}_{rc}(H_i) \}.$

Download English Version:

<https://daneshyari.com/en/article/427230>

Download Persian Version:

<https://daneshyari.com/article/427230>

[Daneshyari.com](https://daneshyari.com)