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Weighted sampling without replacement has proved to be a very important tool in 
designing new algorithms. Efraimidis and Spirakis [5] presented an algorithm for weighted 
sampling without replacement from data streams. Their algorithm works under the 
assumption of precise computations over the interval [0, 1]. Cohen and Kaplan [3] used 
similar methods for their bottom-k sketches.
Efraimidis and Spirakis ask as an open question whether using finite precision arithmetic 
impacts the accuracy of their algorithm. In this paper we show a method to avoid 
this problem by providing a precise reduction from k-sampling without replacement to 
k-sampling with replacement. We call the resulting method Cascade Sampling.

© 2015 Published by Elsevier B.V.

1. Introduction

Random sampling is a fundamental tool that has many 
applications in computer science (see e.g., Motwani and 
Raghavan [12], Knuth [9], Tille [15], and Olken [13]). Ran-
dom sampling methods are widely used is data stream 
processing because of their simplicity and efficiency [14,
8,7,6,10,11]. In a stream, the size of the domain and 
the probability of sampling an element both change con-
stantly; this makes the process of sampling non-trivial. We 
distinguish between sampling with replacement, where all 
samples are independent (and thus can be repeated), and 
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sampling without replacement, where repetitions are pro-
hibited.

In particular, weighted sampling without replacement 
has proven to be a very important tool. In weighted sam-
pling, each element is given a weight, where the probabil-
ity of an element being selected is based on its weight. In 
their work Efraimidis and Spirakis [5] presented an algo-
rithm for weighted sampling without replacement. Cohen 
and Kaplan [3] use similar methods for their bottom-k 
sketches. While their preliminary implementation yielded 
promising results, Efraimidis and Spirakis [5] state, as the 
main open problem of the paper, “However, the question if, 
and to what extent, the finite precision arithmetic affects the al-
gorithms remains an open problem.”

In this paper we continue this work and provide a new 
algorithm to avoid the issue of relying on finite preci-
sion arithmetic. With this result we show that precision 
loss is not required in order to sample without replace-
ment. We accomplish this by providing a precise reduction 
from k-sampling without replacement to k-sampling with 
replacement, using a special case of k-sampling with re-
placement, unit sampling (where k = 1). Additionally, we 
believe that in the future our method of expressing differ-
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ent random samples via reduction will provide a tool that 
allows further translation of other sampling methods into 
a more effective form for streams.

1.1. Related work

Due to its fundamental nature, the problem of random 
sampling has received considerable attention in the last 
few decades.

In 2005, Vitter [16] presented uniform sampling using 
a reservoir (with and without replacement) over streams. 
Further, the question of reductions between sampling 
methods has been addressed before. For instance, Chaud-
huri, Motwani and Narasayya [2] briefly discuss reductions 
for various sampling methods. Cohen and Kaplan [3] use a 
“mimicking process” in their papers, which is essentially a 
reduction from sampling without replacement to sampling 
with replacement.

Chaudhuri, Motwani and Narasayya [2] use the well-
known method of “over-sampling”, i.e. we sample the 
set independently until k distinct elements are obtained. 
Clearly, this schema does not introduce any precision loss, 
since unit sampling is used as a black-box.

Unfortunately, the amount of resources required to de-
termine this information is a function of the weight distri-
bution for the data set, and thus can be arbitrarily large.

In particular, consider the case when there is an ele-
ment with weight that is overwhelmingly larger than the 
rest of the population. In this case, the number of repe-
titions found while sampling with replacement is signifi-
cantly larger then k.

Probably the first effective non-streaming solution for 
the weighted sampling without replacement problem was 
the algorithm of Wong and Easton [17]. It is used by 
many other algorithms (see Olken [13] for the discussion). 
For data streams, Efraimidis and Spirakis [5] proposed an 
algorithm that is based on the “exponent method”. The 
algorithm requires precise computations of random keys 
r1/w(p) , where r ∼ U [0, 1]. The sample generated is com-
posed of the k elements with maximal keys. Cohen and 
Kaplan [3] used similar methods as a building block for 
their bottom-k sketches. The bottom-k sketch is an effec-
tive construction that has been extensively used for var-
ious applications including approximations of aggregative 
queries over data streams. As Cohen and Kaplan [3] show, 
these methods are very effective in practical applications 
and are superior to the sketches that are based on sam-
pling with replacement.

While effective in practice, the algorithms of Efraimidis 
and Spirakis and Cohen and Kaplan introduce a loss of ac-
curacy, since their techniques require additional floating 
point arithmetic operations.

1.2. Results

In this paper we show that the tradeoff between pre-
cision and performance is not a necessary property of 
sampling without replacement from data streams and con-
struct a precise streaming reduction from k-sampling with-
out replacement to k-sampling with replacement. This re-
sult provides a practical improvement to the algorithms of 

Algorithm 1 Black-Box WR2: Algorithm for Weighted Unit 
Sampling.

1. W ← 0.
2. Initialize reservoir with length r = 1, λ0.
3. For each tuple t in stream:

(a) Get next tuple t with weight w(t)
(b) W ← W + w(t)
(c) Set λ0 = t with prob. w(t)

W
4. Return λ0

Efraimidis and Spirakis in cases where high accuracy is re-
quired.

Our method is yields a surprisingly simple algorithm, 
given the importance of sampling without replacement 
and the existence of many previous methods. We call this 
algorithm Cascade Sampling. In particular, when used with 
the algorithm from [2] Cascade Sampling requires O (k)

memory, constant time per element and the same preci-
sion as in [2].

1.3. Intuition

Let � be any algorithm that maintains a unit weighted 
sample from stream D . Similarly to the over-sampling 
method, we maintain instances of �. Namely, we maintain 
k instances �1, . . . , �k . However, we introduce the idea of 
stream modification. That is, instead of applying � inde-
pendently and symmetrically on D , we apply �i on the 
modified stream Di that does not contain samples of � j
for j < i. In particular, �i may process its input elements 
in an order different from the order of their arrival in D . This 
simple but novel idea is sufficient to solve the problem. In 
particular, we can claim that the input of �i is a random 
set that precisely matches the definition of weighted sam-
pling without replacement. Since we use � as a black box 
with only a constant number of auxiliary variables, specif-
ically pointers, the resulting schema is a precise reduction.

2. Definitions

An important building block of our algorithm is the 
concept of a unit sample, that is, the ability to sample a 
single element from a set.

Definition 1. Let S be a finite set of elements and let w be 
a non-negative function w : S → R . A random element X S

with values from S is a unit weighted random sample if, 
for any a ∈ S , P (X S = a) = w(a)

w(S)
. Here w(S) = ∑

a∈S w(a).

For an algorithm instantiating weighted unit sampling 
we provide Black-Box WR2 from [2]. Black-Box WR2 is a 
unit sample when r = 1 (Algorithm 1).

Definition 2. A data stream is an ordered, set of elements, 
p1, p2, . . . , pn , that can be observed only once. An algo-
rithm A is a streaming sampling algorithm if A outputs a 
sample using a single pass over the data set.

Definition 3. A set X = {X1, . . . , Xk} is called a k-sample 
with replacement from S if X1, . . . , Xk are independent 
random unit samples from S .
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