Embedding even cycles on folded hypercubes with conditional faulty edges

Dongqin Cheng ${ }^{\text {a,b,* }}$, Rong-Xia Hao ${ }^{\text {b }}$, Yan-Quan Feng ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Jinan University, Guangzhou, Guangdong 510632, China
${ }^{\text {b }}$ Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China

ARTICLE INFO

Article history:

Received 19 June 2014
Received in revised form 3 January 2015
Accepted 30 July 2015
Available online 4 August 2015
Communicated by X . Wu

Keywords:

Folded hypercube
Cycle embedding
Conditional fault model
Faulty edge
Interconnection network

Abstract

Let $F F_{e}$ be the set of $\left|F F_{e}\right| \leq 2 n-4$ faulty edges in an n-dimensional folded hypercube $F Q_{n}$ such that each vertex in $F Q_{n}$ is incident to at least two fault-free edges. Under this assumption, we show that every edge of $F Q_{n}-F F_{e}$ lies on a fault-free cycle of every even length from 6 to 2^{n}, where $n \geq 5$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The n-dimensional hypercube, denoted by Q_{n}, is one of the most versatile, efficient interconnection network [1,6]. One of the hypercube's variations is the folded hypercube [4], denoted by $F Q_{n}$, which is constructed by adding a link to every pair of nodes that have complementary addresses.

An embedding of one guest graph G into another host graph H is a one-to-one mapping f from the node set of G to the node set of H [6]. The distance between any two vertices, u and v, of G, denoted by $d_{G}(x, y)$, is the length of the shortest path between u and v. Let F_{e} (respectively, $F F_{e}$) be the set of faulty edges in Q_{n} (respectively, $F Q_{n}$). Under the conditional fault model, i.e., each vertex is incident to at least two fault-free edges, Tsai et al. [9] showed that each edge of $Q_{n}-F_{e}$ lies on a fault-free cycle of every even length from 6 to 2^{n} for $n \geq 3$, where $\left|F_{e}\right| \leq 2 n-5$. Let F be a set of $2 n-5$ faulty edges in $Q_{n}(n \geq 3)$. Kueng et al.

[^0][5] proved that a conditionally faulty Q_{n} with $|F|=2 n-5$ faulty edges contains a fault-free path of length ℓ between any two nodes u and v of distance $d^{*}=d_{Q_{n}-F}(u, v) \geq 2$ for each ℓ satisfying $d^{*} \leq \ell \leq 2^{n}-1$ and $2 \mid\left(\ell-d^{*}\right)$. Given a faulty $F Q_{n}$ with $\left|F F_{e}\right| \leq n-1$ faulty edges, Xu et al. [10] proved that every fault-free edge lies on a fault-free cycle of every even length from 4 to 2^{n}. As to embedding odd cycles in folded hypercubes with $\left|F F_{e}\right| \leq 2 n-5$ faulty edges under conditional fault model can be found in [3]. In this paper, we consider the $F Q_{n}(n \geq 3)$ with $\left|F F_{e}\right| \leq 2 n-4$ faulty edges under the conditional fault model and prove that every fault-free edge lies on a fault-free cycle of every even length from 6 to 2^{n}. As to embedding even cycles in $F Q_{n}$, our result improves the result by Xu et al. [10] in terms of the number of fault-tolerant edges.

2. Definitions and terminology

Let networks discussed in this paper be represented by simple undirected graphs. For graph-theoretical terminology and notation not defined here, we follow [2]. A path $P=\left\langle v_{0}, v_{1}, \cdots, v_{n}\right\rangle$ is a sequence of distinct vertices in which any two consecutive vertices are adjacent.

$F Q_{2}$

$F Q_{3}$

Fig. 1. $F Q_{2}$ and $F Q_{3}$, in which the dashed lines represent the complementary edges.
P is also denoted by $P=\left\langle v_{0}, \cdots, v_{i}, P\left[v_{i}, v_{j}\right], v_{j}, \cdots, v_{n}\right\rangle$, where $P\left[v_{i}, v_{j}\right]=\left\langle v_{i}, v_{i+1}, \cdots, v_{j-1}, v_{j}\right\rangle$ if it exists. Two paths P_{1} and P_{2} are vertex-disjoint if and only if $V\left(P_{1}\right) \cap$ $V\left(P_{2}\right)=\emptyset$. A cycle is a path with at least three vertices, where the two end-vertices are adjacent. The length of a path P (respectively, cycle C), denoted by $\ell(P)$ (respectively, $\ell(C)$), is the number of the edges in P (respectively, C). For a graph G, G is edge-bipancyclic if each edge lies on a cycle of every even length from 4 to $|V(G)|$. An isomorphism from a graph G to a graph H is a bijection $\pi: V(G) \rightarrow V(H)$ such that $(u, v) \in E(G)$ if and only if $(\pi(u), \pi(v)) \in E(H) . G$ is called isomorphism to H, denoted by $G \cong H$. An automorphism of G is an isomorphism from G to G. A graph G is edge-transitive if for any two edges e_{1} and e_{2} in $E(G)$, there exists an automorphism that maps e_{1} to e_{2}.

An n-dimensional hypercube Q_{n} is represented by $Q_{n}=\left(V\left(Q_{n}\right), E\left(Q_{n}\right)\right)$, where $V\left(Q_{n}\right)=\left\{u_{n} u_{n-1} \ldots u_{1} \mid u_{i} \in\right.$ $\{0,1\}$ for $i=1,2, \cdots, n\} .(u, v) \in E\left(Q_{n}\right)$ if and only if u and v differ in exactly one bit of their labels. Let $E_{k}=$ $\left\{\left(u_{n} u_{n-1} \ldots u_{k+1} 0 u_{k-1} \ldots u_{1}, u_{n} u_{n-1} \ldots u_{k+1} 1 u_{k-1} \ldots u_{1}\right) \mid\right.$ $u_{i} \in\{0,1\}$ for $1 \leq i \leq n$ and $\left.i \neq k\right\}$. An edge in E_{k} is called along dimension $k . Q_{n}$ can be partitioned along dimension k ($1 \leq k \leq n$) into two subcubes $Q_{n-1}^{k, 0}$ and $Q_{n-1}^{k, 1}$, where $Q_{n-1}^{k, 0}$ is induced by the vertex set $\left\{u_{n} u_{n-1} \ldots u_{k+1} 0 u_{k-1}\right.$ $\ldots u_{1} \mid u_{i} \in\{0,1\}$ for $1 \leq i \leq n$ and $\left.i \neq k\right\}$ and $Q_{n-1}^{k, 1}$ is induced by the vertex set $\left\{u_{n} u_{n-1} \ldots u_{k+1} 1 u_{k-1} \ldots u_{1} \mid u_{i} \in\right.$ $\{0,1\}$ for $1 \leq i \leq n$ and $i \neq k\}$. The edges between $Q_{n-1}^{k, 0}$ and $Q_{n-1}^{k, 1}$ are called crossing edges.

An n-dimensional folded hypercube $F Q_{n}$ is constructed from Q_{n} by adding an edge, called complementary edge, between every two vertices with complementary addresses (i.e., vertex $x=x_{n} x_{n-1} \ldots x_{1}$ and vertex $\bar{x}=\bar{x}_{n} \bar{x}_{n-1} \ldots \bar{x}_{1}$). $F Q_{2}$ and $F Q_{3}$ are shown in Fig. 1 . We use E_{a} to denote the set of all complementary edges, then $F Q_{n}$ can be represented by $F Q_{n}=Q_{n} \cup E_{a}$. It has been shown that $F Q_{n}$ is ($n+1$)-regular, $(n+1)$-connected, vertex-transitive and edge-transitive [10].

3. Main results

In this section, we will prove our main result. Firstly, we need the following lemmas.

Lemma 1. (See [10].) $F Q_{n}-E_{i} \cong Q_{n}$ for each $i \in\{1,2, \cdots$, $n, a\}$.

By Lemma $1, F Q_{n}-E_{i} \cong Q_{n}$ and Q_{n} can be partitioned along dimension k into two subcubes $Q_{n-1}^{k, 0}$ and $Q_{n-1}^{k, 1}$ (abbreviated as Q_{n-1}^{0} and Q_{n-1}^{1} if k is specified). The vertex with labels $0 u_{n-1} \ldots u_{1}$ (respectively, $1 u_{n-1} \ldots u_{1}$) of $F Q_{n}$ in Q_{n-1}^{0} (respectively, Q_{n-1}^{1}) is denoted by $0 u$ (respectively, $1 u$), i.e., $0 u=0 u_{n-1} \ldots u_{1}$ (respectively, $1 u=$ $1 u_{n-1} \ldots u_{1}$). The crossing edge containing $0 u$ is denoted by ($0 u, 1 u$) and the complementary edge containing $0 u$ is denoted by $(0 u, 1 \bar{u})$, where $1 u=1 u_{n-1} \ldots u_{1}$ and $1 \bar{u}=$ $1 \bar{u}_{n-1} \ldots \bar{u}_{1}$.

Lemma 2. (See [10].) Let F_{e} be a set of $n-2$ faulty edges in $Q_{n}(n \geq 2)$. Suppose that u and v are any two different vertices of $Q_{n}-F_{e}$. Then $Q_{n}-F_{e}$ contains a path of length ℓ between u and v for every ℓ satisfying $d_{Q_{n}-F_{e}}(u, v) \leq \ell \leq 2^{n}-1$ and $2 \mid\left(\ell-d_{Q_{n}-F_{e}}(u, v)\right)$.

Lemma 3. (See [7].) If $n \geq 2$, then every edge of Q_{n} lies on a cycle of every even length from 4 to 2^{n}.

Lemma 4. (See [8].) Assume that $n \geq 2$. Let X and Y be any two partite sets of Q_{n}. In addition, x and u are any two distinct vertices of X; and y and v are any two distinct vertices of Y. Then there exist two vertex-disjoint paths P_{1} and P_{2} such that: (1) P_{1} connects u to v, (2) P_{2} connects x to y, and (3) $V\left(P_{1}\right) \cup$ $V\left(P_{2}\right)=V\left(Q_{n}\right)$.

Lemma 5. (See [9].) Every fault-free edge in $Q_{n}-F_{e}$ lies on a fault-free cycle of every even length from 6 to 2^{n} under the condition that $\left|F_{e}\right| \leq 2 n-5$ and each vertex is incident to at least two fault-free edges, where $n \geq 3$.

We present our main result as follows.
Theorem 1. Let $F F_{e}$ be the set of faulty edges in $F Q_{n}$ for $n \geq 5$. Assume that $\left|F F_{e}\right| \leq 2 n-4$ and each vertex in $F Q_{n}$ is incident to at least two fault-free edges, then every edge of $F Q_{n}-F F_{e}$ lies on a fault-free cycle of every even length from 6 to 2^{n}.

Proof. Since each vertex in $F Q_{n}$ is incident to at least two fault-free edges. If $\left|F F_{e}\right| \leq 2 n-5$, then let $k=(2 n-4)-$ $\left|F F_{e}\right|$. Let $M_{1}=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ and $M_{2}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{k}^{\prime}\right\}$ be two sets of fault-free edges such that each vertex in $F Q_{n}-$ $F F_{e}-M_{1}$ (respectively, $F Q_{n}-F F_{e}-M_{2}$) is incident to at least two fault-free edges, where $M_{1} \cap M_{2}=\emptyset$ and $F Q_{n}$ $F F_{e}=\left(F Q_{n}-F F_{e}-M_{1}\right) \cup\left(F Q_{n}-F F_{e}-M_{2}\right)$. (Since $\left|E\left(F Q_{n}\right)\right|=$ $2^{n-1}(n+1)>2(2 n-4) \geq 2 k, M_{1}$ and M_{2} indeed exist.) Let $F F_{e}^{i}=F F_{e} \cup M_{i}$ for $i=1,2$. Then $\left|F F_{e}^{i}\right|=2 n-4$. Hence, if $\left|F F_{e}\right| \leq 2 n-5$, by taking the edges in $M_{i}(i=1,2)$ as fault-free edges temporarily, we need to prove that each edge in $F Q_{n}-F F_{e}^{i}$ lies on a fault-free cycle of every even length from 6 to 2^{n}, where $\left|F F_{e}^{i}\right|=2 n-4$. If $\left|F F_{e}\right|=2 n-4$, we need to prove that each edge in $F Q_{n}-F F_{e}$ lies on a fault-free cycle of every even length from 6 to 2^{n}. By the same number of faulty edges in $F F_{e}^{i}$ (when $\left|F F_{e}\right| \leq 2 n-5$) as that in $F F_{e}$ (when $\left|F F_{e}\right|=2 n-4$), in the following, we only need to consider $\left|F F_{e}\right|=2 n-4$.

Consider any fault-free edge e in $F Q_{n}$. From $E\left(F Q_{n}\right)=$ $\cup_{i=1}^{n} E_{i} \cup E_{a}$, we can see that there exists an $i \in\{1,2, \ldots$, $n, a\}$ such that $e \in E_{i}$. Since $F Q_{n}$ is edge-transitive, we may

https://daneshyari.com/en/article/427235

Download Persian Version:

https://daneshyari.com/article/427235

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: xincheng168@126.com (D. Cheng), rxhao@bjtu.edu.cn (R.-X. Hao), yqfeng@bjtu.edu.cn (Y.-Q. Feng).

