Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Embedding even cycles on folded hypercubes with conditional faulty edges

Dongqin Cheng^{a,b,*}, Rong-Xia Hao^b, Yan-Quan Feng^b

^a Department of Mathematics, Jinan University, Guangzhou, Guangdong 510632, China

^b Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China

ARTICLE INFO

Article history: Received 19 June 2014 Received in revised form 3 January 2015 Accepted 30 July 2015 Available online 4 August 2015 Communicated by X. Wu

Keywords: Folded hypercube Cycle embedding Conditional fault model Faulty edge Interconnection network

ABSTRACT

Let FF_e be the set of $|FF_e| \le 2n - 4$ faulty edges in an *n*-dimensional folded hypercube FQ_n such that each vertex in FQ_n is incident to at least two fault-free edges. Under this assumption, we show that every edge of $FQ_n - FF_e$ lies on a fault-free cycle of every even length from 6 to 2^n , where $n \ge 5$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The *n*-dimensional hypercube, denoted by Q_n , is one of the most versatile, efficient interconnection network [1,6]. One of the hypercube's variations is the *folded hypercube* [4], denoted by FQ_n , which is constructed by adding a link to every pair of nodes that have complementary addresses.

An *embedding* of one guest graph *G* into another host graph *H* is a one-to-one mapping *f* from the node set of *G* to the node set of *H* [6]. The *distance* between any two vertices, *u* and *v*, of *G*, denoted by $d_G(x, y)$, is the length of the shortest path between *u* and *v*. Let F_e (respectively, FF_e) be the set of faulty edges in Q_n (respectively, FQ_n). Under the *conditional fault model*, i.e., each vertex is incident to at least two fault-free edges, Tsai et al. [9] showed that each edge of $Q_n - F_e$ lies on a fault-free cycle of every even length from 6 to 2^n for $n \ge 3$, where $|F_e| \le 2n - 5$. Let *F* be a set of 2n - 5 faulty edges in Q_n ($n \ge 3$). Kueng et al.

* Corresponding author.

E-mail addresses: xincheng168@126.com (D. Cheng), rxhao@bjtu.edu.cn (R.-X. Hao), yqfeng@bjtu.edu.cn (Y.-Q. Feng).

http://dx.doi.org/10.1016/j.ipl.2015.07.015 0020-0190/© 2015 Elsevier B.V. All rights reserved. [5] proved that a conditionally faulty Q_n with |F| = 2n - 5 faulty edges contains a fault-free path of length ℓ between any two nodes u and v of distance $d^* = d_{Q_n - F}(u, v) \ge 2$ for each ℓ satisfying $d^* \le \ell \le 2^n - 1$ and $2 \mid (\ell - d^*)$. Given a faulty FQ_n with $|FF_e| \le n - 1$ faulty edges, Xu et al. [10] proved that every fault-free edge lies on a fault-free cycle of every even length from 4 to 2^n . As to embedding odd cycles in folded hypercubes with $|FF_e| \le 2n - 5$ faulty edges under conditional fault model can be found in [3]. In this paper, we consider the FQ_n $(n \ge 3)$ with $|FF_e| \le 2n - 4$ faulty edges under the conditional fault model and prove that every fault-free edge lies on a fault-free cycle of every even length from 6 to 2^n . As to embedding even cycles in FQ_n , our result improves the result by Xu et al. [10] in terms of the number of fault-tolerant edges.

2. Definitions and terminology

Let networks discussed in this paper be represented by simple undirected graphs. For graph-theoretical terminology and notation not defined here, we follow [2]. A *path* $P = \langle v_0, v_1, \dots, v_n \rangle$ is a sequence of distinct vertices in which any two consecutive vertices are adjacent.

CrossMark

Fig. 1. FQ_2 and FQ_3 , in which the dashed lines represent the complementary edges.

P is also denoted by $P = \langle v_0, \dots, v_i, P[v_i, v_j], v_j, \dots, v_n \rangle$, where $P[v_i, v_j] = \langle v_i, v_{i+1}, \dots, v_{j-1}, v_j \rangle$ if it exists. Two paths P_1 and P_2 are vertex-disjoint if and only if $V(P_1) \cap$ $V(P_2) = \emptyset$. A cycle is a path with at least three vertices, where the two end-vertices are adjacent. The length of a path P (respectively, cycle C), denoted by $\ell(P)$ (respectively, $\ell(C)$), is the number of the edges in P (respectively, C). For a graph G, G is edge-bipancyclic if each edge lies on a cycle of every even length from 4 to |V(G)|. An isomorphism from a graph G to a graph H is a bijection $\pi: V(G) \to V(H)$ such that $(u, v) \in E(G)$ if and only if $(\pi(u), \pi(v)) \in E(H)$. G is called isomorphism to H, denoted by $G \cong H$. An *automorphism* of G is an isomorphism from G to G. A graph G is edge-transitive if for any two edges e_1 and e_2 in E(G), there exists an automorphism that maps e_1 to e_2 .

An *n*-dimensional hypercube Q_n is represented by $Q_n = (V(Q_n), E(Q_n))$, where $V(Q_n) = \{u_n u_{n-1} \dots u_1 \mid u_i \in \{0, 1\}$ for $i = 1, 2, \dots, n\}$. $(u, v) \in E(Q_n)$ if and only if u and v differ in exactly one bit of their labels. Let $E_k = \{(u_n u_{n-1} \dots u_{k+1} 0 u_{k-1} \dots u_1, u_n u_{n-1} \dots u_{k+1} 1 u_{k-1} \dots u_1) \mid u_i \in \{0, 1\}$ for $1 \le i \le n$ and $i \ne k\}$. An edge in E_k is called along dimension k. Q_n can be partitioned along dimension k $(1 \le k \le n)$ into two subcubes $Q_{n-1}^{k,0}$ and $Q_{n-1}^{k,1}$, where $Q_{n-1}^{k,0}$ is induced by the vertex set $\{u_n u_{n-1} \dots u_{k+1} 0 u_{k-1} \dots u_1 \mid u_i \in \{0, 1\}$ for $1 \le i \le n$ and $i \ne k\}$ and $Q_{n-1}^{k,1}$ is induced by the vertex set $\{u_n u_{n-1} \dots u_{k+1} 1 u_{k-1} \dots u_1 \mid u_i \in \{0, 1\}$ for $1 \le i \le n$ and $i \ne k\}$. The edges between $Q_{n-1}^{k,0}$ and $Q_{n-1}^{k,1}$ are called *crossing edges*.

An *n*-dimensional folded hypercube FQ_n is constructed from Q_n by adding an edge, called *complementary edge*, between every two vertices with complementary addresses (i.e., vertex $x = x_n x_{n-1} \dots x_1$ and vertex $\bar{x} = \bar{x}_n \bar{x}_{n-1} \dots \bar{x}_1$). FQ_2 and FQ_3 are shown in Fig. 1. We use E_a to denote the set of all complementary edges, then FQ_n can be represented by $FQ_n = Q_n \cup E_a$. It has been shown that FQ_n is (n + 1)-regular, (n + 1)-connected, vertex-transitive and edge-transitive [10].

3. Main results

In this section, we will prove our main result. Firstly, we need the following lemmas.

Lemma 1. (See [10].) $FQ_n - E_i \cong Q_n$ for each $i \in \{1, 2, \dots, n, a\}$.

By Lemma 1, $FQ_n - E_i \cong Q_n$ and Q_n can be partitioned along dimension k into two subcubes $Q_{n-1}^{k,0}$ and $Q_{n-1}^{k,1}$ (abbreviated as Q_{n-1}^0 and Q_{n-1}^1 if k is specified). The vertex with labels $0u_{n-1} \dots u_1$ (respectively, $1u_{n-1} \dots u_1$) of FQ_n in Q_{n-1}^0 (respectively, Q_{n-1}^1) is denoted by 0u (respectively, 1u), i.e., $0u = 0u_{n-1} \dots u_1$ (respectively, 1u = $1u_{n-1} \dots u_1$). The crossing edge containing 0u is denoted by (0u, 1u) and the complementary edge containing 0uis denoted by $(0u, 1\overline{u})$, where $1u = 1u_{n-1} \dots u_1$ and $1\overline{u} =$ $1\overline{u}_{n-1} \dots \overline{u}_1$.

Lemma 2. (See [10].) Let F_e be a set of n - 2 faulty edges in Q_n ($n \ge 2$). Suppose that u and v are any two different vertices of $Q_n - F_e$. Then $Q_n - F_e$ contains a path of length ℓ between u and v for every ℓ satisfying $d_{Q_n - F_e}(u, v) \le \ell \le 2^n - 1$ and $2 \mid (\ell - d_{Q_n - F_e}(u, v))$.

Lemma 3. (See [7].) If $n \ge 2$, then every edge of Q_n lies on a cycle of every even length from 4 to 2^n .

Lemma 4. (See [8].) Assume that $n \ge 2$. Let X and Y be any two partite sets of Q_n . In addition, x and u are any two distinct vertices of X; and y and v are any two distinct vertices of Y. Then there exist two vertex-disjoint paths P_1 and P_2 such that: (1) P_1 connects u to v, (2) P_2 connects x to y, and (3) $V(P_1) \cup V(P_2) = V(Q_n)$.

Lemma 5. (See [9].) Every fault-free edge in $Q_n - F_e$ lies on a fault-free cycle of every even length from 6 to 2^n under the condition that $|F_e| \le 2n - 5$ and each vertex is incident to at least two fault-free edges, where $n \ge 3$.

We present our main result as follows.

Theorem 1. Let FF_e be the set of faulty edges in FQ_n for $n \ge 5$. Assume that $|FF_e| \le 2n - 4$ and each vertex in FQ_n is incident to at least two fault-free edges, then every edge of $FQ_n - FF_e$ lies on a fault-free cycle of every even length from 6 to 2^n .

Proof. Since each vertex in FQ_n is incident to at least two fault-free edges. If $|FF_e| \le 2n - 5$, then let k = (2n - 4) - 6 $|FF_e|$. Let $M_1 = \{e_1, e_2, \dots, e_k\}$ and $M_2 = \{e'_1, e'_2, \dots, e'_k\}$ be two sets of fault-free edges such that each vertex in FQ_n – $FF_e - M_1$ (respectively, $FQ_n - FF_e - M_2$) is incident to at least two fault-free edges, where $M_1 \cap M_2 = \emptyset$ and FQ_n – $FF_e = (FQ_n - FF_e - M_1) \cup (FQ_n - FF_e - M_2)$. (Since $|E(FQ_n)| =$ $2^{n-1}(n+1) > 2(2n-4) \ge 2k$, M_1 and M_2 indeed exist.) Let $FF_e^i = FF_e \cup M_i$ for i = 1, 2. Then $|FF_e^i| = 2n - 4$. Hence, if $|FF_e| \leq 2n - 5$, by taking the edges in M_i (i = 1, 2) as fault-free edges temporarily, we need to prove that each edge in $FQ_n - FF_e^i$ lies on a fault-free cycle of every even length from 6 to 2^n , where $|FF_e^i| = 2n - 4$. If $|FF_e| = 2n - 4$, we need to prove that each edge in $FQ_n - FF_e$ lies on a fault-free cycle of every even length from 6 to 2^n . By the same number of faulty edges in FF_e^i (when $|FF_e| \le 2n - 5$) as that in FF_e (when $|FF_e| = 2n - 4$), in the following, we only need to consider $|FF_e| = 2n - 4$.

Consider any fault-free edge e in FQ_n . From $E(FQ_n) = \bigcup_{i=1}^{n} E_i \cup E_a$, we can see that there exists an $i \in \{1, 2, ..., n, a\}$ such that $e \in E_i$. Since FQ_n is edge-transitive, we may

Download English Version:

https://daneshyari.com/en/article/427235

Download Persian Version:

https://daneshyari.com/article/427235

Daneshyari.com