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modeled by total domination in graphs. Locating-total dominating sets are of interest when
the intruder/fault at a vertex precludes its detection in that location. A total dominating
set S of a graph G with no isolated vertex is a locating-total dominating set of G if for
every pair of distinct vertices u and v in V — S are totally dominated by distinct subsets

Keywords: of the total dominating set. The locating-total domination number of a graph G is the

Combinatorial problems minimum cardinality of a locating-total dominating set of G. In this paper, we study the

Locating-total domination bounds on locating-total domination numbers of the Cartesian product C,,OP, of cycles

Cartesian product Cm and paths Pj. Exact values for the locating-total domination number of the Cartesian

Cycle product C30O0P; are found, and it is shown that for the locating-total domination number

Path of the Cartesian product C40Py, this number is between [37”] and [37"] + 1 with two sharp
bounds.
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1. Introduction Graph theory terminology not presented here can be
found in [3,4]. All graphs considered in this paper are sim-
ple without isolated vertices. Let G = (V, E) be a graph
with vertex set V and edge set E. For any vertex v € G, the
open neighborhood of v is the set N(v) = {u € V|uv € E},
and its closed neighborhood is the set N[v] = N(v) U {v}.
We denote the degree of a vertex v in G by dg(v), or
simply by d(v) if the graph G is clear from the text. For
any S €V, N(S) = UyesN(v). Let (S) denote the graph

The location of monitoring devices, such as surveillance
cameras or fire alarms, used to safeguard a system serves
as the motivation for this work. The problem of placing
monitoring devices in a system in such a way that every
site in the system (including the monitors themselves) is
adjacent to a monitor site can be modeled by total dom-
ination in graphs. Applications where it is also important

that if there is a problem at a facility, the location can be induced by S. For two vertices u, v € V, the distance be-
uniquely identified by the set of monitors, can be modeled tween u and v is d(u,v). The distance between a ver-
by a combination of total-domination and locating sets. tex u and a set S of vertices in a graph is defined as
Locating-total dominating set in graph was introduced by d(u, $) =min{d(u, v)|v € S}. If S and T are two vertex dis-
Haynes and Henning [5] and has been studied in [1,5-7] joint subsets of V, then we denote the number of all edges
and elsewhere. of G that join a vertex of S and a vertex of T by e[S, T].

Throughout this paper, we use C, and P, to denote a cycle

and a path of the order n, respectively.
* Corresponding author. For graphs G1 and G;, the Cartesian product G10G; is
E-mail address: mysohn@changwon.ac.kr (M.Y. Sohn). the graph with vertex set V(G1) x V(G,) where two ver-
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tices (u1, v1) and (uy, vy) are adjacent if and only if either
uq =uy and vivy € E(Gy) or vi = vy and uiuy € E(Gq).

Let {vij|]1 <i <m,1 < j<n} be the vertex set of
G = CpOP, so that the subgraph induced by H; =
{vi1, Vi2, ..., Vip} is isomorphic to the path P, for each 1 <
i <m and the subgraph induced by V; = {v1j, v2j, ..., Vmj}
is isomorphic to the cycle Cp, for each 1 < j <n.

A subset S C V is a total dominating set (abbreviated,
TDS) if every vertex in V has a neighbor in S. The total
domination number of G, denoted by y;:(G), is the minimum
cardinality of a total dominating set of G. Total domination
was introduced by Cockayne et al. [2] and is now well-
studied in graph theory [3,4].

A total dominating set S in a graph G = (V,E) is a
locating-total dominating set (abbreviated, LTDS) of G if for
every pair of distinct vertices u and v in V — S, Nu) NS #
N(v)NS. The minimum cardinality of a locating-total dom-
inating set is the locating-total domination number ytL(G).
We call a ytL(G)—set a locating-total dominating set in G of
cardinality ¥ (G).

In [5], Haynes et al. gave a lower bound on the locating-
total domination number of a tree in terms of order and
characterized the extremal tree as achieving equality in
the lower bound. In [1], Chen and Sohn established lower
and upper bounds on the locating-total domination num-
ber of trees and constructively characterized the extremal
trees achieving the bounds. In [6], Henning and Lowen-
stein showed that the locating-total domination number of
a claw-free cubic graph is at most one-half its order and
characterized the graphs that achieved this bound. In [7],
Henning and Rad gave lower and upper bounds on the
locating-total domination number of a graph, showed that
the locating-total domination number and total domina-
tion number of a connected cubic graph can differ sig-
nificantly, and investigated the locating-total domination
number of grid graph P, 0P, for small m.

In this paper, we establish upper bounds on locating to-
tal domination numbers of the Cartesian product C,OP,
of cycles C; and paths P,. In particular, we prove that
for any positive integer n, y/(C30P;) =n+1 and [3] <
ytL(C4DPn) < f37”1 + 1, and these bounds are sharp.

2. Bounds of locating-total domination number of
Cm Oa Pn

In this section, we present upper and lower bounds
on the locating-total domination number of the Cartesian
product of cycles Cp, and paths Pj,.

Theorem 2.1. For any positive integers m, n such that m =
0(mod 3) and n > 3, Yt (CnOPp) < smn +1).

Proof. Let G = C,OP,, where m = 3t for a positive in-
teger t. For any integers i, j such that 1 <i <3 and
1<j<n, let Dij=V; — U {vaii;)-

If n=3, then S = Dy1 U Dy3 is a LTDS of order
4t =im@n +1) in G. If n=4, then S = Dy UDy3U
(UiZp{vit1ia)) is a LTDS of order 5t = Im(n + 1) in G.
If n=25, then S = Dq; UD3y3 UD35 is a LTDS of order
6t =im@m+1)in G.

Assume that n > 6. Let n =6k +r, where k>1 and 0 <
r<5. Let So= U{;;é(DusH_]) U D26j+3) U D36j5))- Then
[So| = 6kt.

If r =0, then S =So U (UZ3{V(it2n)) is a LTDS of or-
der tn+t=Imn+1) in G. If r=1, then S =S U D1y
is a LTDS of order 6kt + 2t = %m(n 4+ 1) in G. If r=2,
then S = So U D11y U (U'Zg{V(3i+2)n}) is a LTDS of or-
der 6kt +3t=1m@m +1) in G. If r =3, then S = So U
D1(n—2) U D2y is a LTDS of order 6kt +4t = sm(n+1) in G.
If r=4, then S=SoU D1(n—3) U Dan-1) U (Uf;(l){VBi-H)n})
is a LTDS of order 6kt + 5t = %m(n 4+ 1) in G. If r =5,
then S = So U D1(n—4) U Dan—2) U D3, is a LTDS of order
6(k+ 1t =1immn+1) in G.

Therefore, y[L(G) <|S|= %m(n + 1). This completes the
proof.

Theorem 2.2. For any positive integers m, n such that m =
1(mod 3) and n > 3,

11, m=4,n=7,
VtL(CmDPn) <4 2m, n=>5;
Tm—1Dm+1)+[31, otherwise.

Proof. Let G = CpOP,, where m =3t + 1 for a posi-
tive integer t. For any integers i, j such that 1 <i <4
and 1<j<n, let Dij = Vj — U_j{v@ii);} and let 1 =
Tm—Dn+1)+T37.

If n=3, then S = D11 UD>3 is a LTDS of order 4t +2 =
Ain G.If n=4, then S = D11 U D23 U (U){v@is1a)) is a
LTDS of order 5t +2=A in G. If n =5, then S=V, UV,
is a LTDS of order 2m in G. If m=4 and n=7, then S =
D4y UVeU{vq1, V34, Vag, vVi5} is a LTDS of order 11 in G.

Assume that n > 6. Let n =6k +r, where k> 1 and 0 <
r<5.Let So = U’;;(l)(Dl(SjH) U D26j+3) U D36jt5))- Then
[So| = 6kt + 3k.

If r=0, then S=SoU (UZy{v@it2n)) is a LTDS of or-
der 6kt + 3k +t =X in G. If r=1, then S = Sy U Dy,
is a LTDS of order 6kt + 3k +2t + 1= A in G. If r =2,
then S = So U Dy(n—1) U (UZg{V(3it2n}) is a LTDS of or-
der 6kt +3k +3t+1=A in G. If r=3, then S =Sg U
D1(n—2) U D2y, is a LTDS of order 6kt +3k+4t+2 =2 in G.
If r=4, then S=SgUDiu-3) UDyn—1)U (U?;é{\/(?ﬂq_])n})
is a LTDS of order 6kt +3k +5t+2=A in G. If r =5,
then S = So U D1(n—4) U D2n—2) U D3, is a LTDS of order
6kt + 3k 4+ 6t +3 = A in G. This completes the proof.

Theorem 2.3. For any positive integers m, n such that m =
2(mod 3) andn > 3,

Zmn, n=5orm=>5,
n=0(mod5);
Tm+1Dn+1) -1, otherwise.

VtL(CmDPn) <

Proof. Let G = C,OP,, where m = 3t + 2 for a positive
integer t. For any integers i, j such that 1 <i <5 and
1<j<nlet Djj=V;— U,t;g{v(3l+,-)j} and let u = %(m +
Dn+1)—1.

If n=3, then S = (D11 — {Vvm1}) U D33 is a LTDS of
order 4t +3 = in G. If n =4, then S = D1y U D)3 U
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