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The problem of placing monitoring devices in a system in such a way that every site in the 
safeguard system (including the monitors themselves) is adjacent to a monitor site can be 
modeled by total domination in graphs. Locating-total dominating sets are of interest when 
the intruder/fault at a vertex precludes its detection in that location. A total dominating 
set S of a graph G with no isolated vertex is a locating-total dominating set of G if for 
every pair of distinct vertices u and v in V − S are totally dominated by distinct subsets 
of the total dominating set. The locating-total domination number of a graph G is the 
minimum cardinality of a locating-total dominating set of G . In this paper, we study the 
bounds on locating-total domination numbers of the Cartesian product Cm�Pn of cycles 
Cm and paths Pn . Exact values for the locating-total domination number of the Cartesian 
product C3�Pn are found, and it is shown that for the locating-total domination number 
of the Cartesian product C4�Pn this number is between � 3n

2 � and � 3n
2 � + 1 with two sharp 

bounds.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The location of monitoring devices, such as surveillance 
cameras or fire alarms, used to safeguard a system serves 
as the motivation for this work. The problem of placing 
monitoring devices in a system in such a way that every 
site in the system (including the monitors themselves) is 
adjacent to a monitor site can be modeled by total dom-
ination in graphs. Applications where it is also important 
that if there is a problem at a facility, the location can be 
uniquely identified by the set of monitors, can be modeled 
by a combination of total-domination and locating sets. 
Locating-total dominating set in graph was introduced by 
Haynes and Henning [5] and has been studied in [1,5–7]
and elsewhere.
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Graph theory terminology not presented here can be 
found in [3,4]. All graphs considered in this paper are sim-
ple without isolated vertices. Let G = (V , E) be a graph 
with vertex set V and edge set E . For any vertex v ∈ G , the 
open neighborhood of v is the set N(v) = {u ∈ V |uv ∈ E}, 
and its closed neighborhood is the set N[v] = N(v) ∪ {v}. 
We denote the degree of a vertex v in G by dG(v), or 
simply by d(v) if the graph G is clear from the text. For 
any S ⊆ V , N(S) = ∪v∈S N(v). Let 〈S〉 denote the graph 
induced by S . For two vertices u, v ∈ V , the distance be-
tween u and v is d(u, v). The distance between a ver-
tex u and a set S of vertices in a graph is defined as 
d(u, S) = min{d(u, v)| v ∈ S}. If S and T are two vertex dis-
joint subsets of V , then we denote the number of all edges 
of G that join a vertex of S and a vertex of T by e[S, T ]. 
Throughout this paper, we use Cn and Pn to denote a cycle 
and a path of the order n, respectively.

For graphs G1 and G2, the Cartesian product G1�G2 is 
the graph with vertex set V (G1) × V (G2) where two ver-
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tices (u1, v1) and (u2, v2) are adjacent if and only if either 
u1 = u2 and v1 v2 ∈ E(G2) or v1 = v2 and u1u2 ∈ E(G1).

Let {vij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} be the vertex set of 
G = Cm�Pn so that the subgraph induced by Hi =
{vi1, vi2, . . . , vin} is isomorphic to the path Pn for each 1 ≤
i ≤ m and the subgraph induced by V j = {v1 j, v2 j, . . . , vmj}
is isomorphic to the cycle Cm for each 1 ≤ j ≤ n.

A subset S ⊆ V is a total dominating set (abbreviated, 
TDS) if every vertex in V has a neighbor in S . The total 
domination number of G , denoted by γt(G), is the minimum 
cardinality of a total dominating set of G . Total domination 
was introduced by Cockayne et al. [2] and is now well-
studied in graph theory [3,4].

A total dominating set S in a graph G = (V , E) is a 
locating-total dominating set (abbreviated, LTDS) of G if for 
every pair of distinct vertices u and v in V − S , N(u) ∩ S �=
N(v) ∩ S . The minimum cardinality of a locating-total dom-
inating set is the locating-total domination number γ L

t (G). 
We call a γ L

t (G)-set a locating-total dominating set in G of 
cardinality γ L

t (G).
In [5], Haynes et al. gave a lower bound on the locating-

total domination number of a tree in terms of order and 
characterized the extremal tree as achieving equality in 
the lower bound. In [1], Chen and Sohn established lower 
and upper bounds on the locating-total domination num-
ber of trees and constructively characterized the extremal 
trees achieving the bounds. In [6], Henning and Löwen-
stein showed that the locating-total domination number of 
a claw-free cubic graph is at most one-half its order and 
characterized the graphs that achieved this bound. In [7], 
Henning and Rad gave lower and upper bounds on the 
locating-total domination number of a graph, showed that 
the locating-total domination number and total domina-
tion number of a connected cubic graph can differ sig-
nificantly, and investigated the locating-total domination 
number of grid graph Pm�Pn for small m.

In this paper, we establish upper bounds on locating to-
tal domination numbers of the Cartesian product Cm�Pn

of cycles Cm and paths Pn . In particular, we prove that 
for any positive integer n, γ L

t (C3�Pn) = n + 1 and � 3n
2 � ≤

γ L
t (C4�Pn) ≤ � 3n

2 � + 1, and these bounds are sharp.

2. Bounds of locating-total domination number of 
Cm�Pn

In this section, we present upper and lower bounds 
on the locating-total domination number of the Cartesian 
product of cycles Cm and paths Pn .

Theorem 2.1. For any positive integers m, n such that m ≡
0(mod 3) and n ≥ 3, γ L

t (Cm�Pn) ≤ 1
3 m(n + 1).

Proof. Let G ∼= Cm�Pn , where m = 3t for a positive in-
teger t . For any integers i, j such that 1 ≤ i ≤ 3 and 
1 ≤ j ≤ n, let Dij = V j − ∪t−1

l=0 {v(3l+i) j}.
If n = 3, then S = D11 ∪ D23 is a LTDS of order 

4t = 1
3 m(n + 1) in G . If n = 4, then S = D11 ∪ D23 ∪

(∪t−1
i=0{v(3i+1)4}) is a LTDS of order 5t = 1

3 m(n + 1) in G . 
If n = 5, then S = D11 ∪ D23 ∪ D35 is a LTDS of order 
6t = 1

3 m(n + 1) in G .

Assume that n ≥ 6. Let n = 6k + r, where k ≥ 1 and 0 ≤
r ≤ 5. Let S0 = ∪k−1

j=0(D1(6 j+1) ∪ D2(6 j+3) ∪ D3(6 j+5)). Then 
|S0| = 6kt .

If r = 0, then S = S0 ∪ (∪t−1
i=0{v(3i+2)n}) is a LTDS of or-

der tn + t = 1
3 m(n + 1) in G . If r = 1, then S = S0 ∪ D1n

is a LTDS of order 6kt + 2t = 1
3 m(n + 1) in G . If r = 2, 

then S = S0 ∪ D1(n−1) ∪ (∪t−1
i=0{v(3i+2)n}) is a LTDS of or-

der 6kt + 3t = 1
3 m(n + 1) in G . If r = 3, then S = S0 ∪

D1(n−2) ∪ D2n is a LTDS of order 6kt + 4t = 1
3 m(n + 1) in G . 

If r = 4, then S = S0 ∪ D1(n−3) ∪ D2(n−1) ∪ (∪t−1
i=0{v(3i+1)n})

is a LTDS of order 6kt + 5t = 1
3 m(n + 1) in G . If r = 5, 

then S = S0 ∪ D1(n−4) ∪ D2(n−2) ∪ D3n is a LTDS of order 
6(k + 1)t = 1

3 m(n + 1) in G .

Therefore, γ L
t (G) ≤ |S| = 1

3 m(n + 1). This completes the 
proof.

Theorem 2.2. For any positive integers m, n such that m ≡
1(mod 3) and n ≥ 3,

γ L
t (Cm�Pn) ≤

⎧⎨
⎩

11, m = 4, n = 7;
2m, n = 5;
1
3 (m − 1)(n + 1) + �n

2 �, otherwise.

Proof. Let G ∼= Cm�Pn , where m = 3t + 1 for a posi-
tive integer t . For any integers i, j such that 1 ≤ i ≤ 4
and 1 ≤ j ≤ n, let Dij = V j − ∪t−1

l=0 {v(3l+i) j} and let λ =
1
3 (m − 1)(n + 1) + � n

2 �.
If n = 3, then S = D11 ∪ D23 is a LTDS of order 4t + 2 =

λ in G . If n = 4, then S = D11 ∪ D23 ∪ (∪t−1
i=0{v(3i+1)4}) is a 

LTDS of order 5t + 2 = λ in G . If n = 5, then S = V2 ∪ V4
is a LTDS of order 2m in G . If m = 4 and n = 7, then S =
D42 ∪ V6 ∪ {v11, v34, v44, v15} is a LTDS of order 11 in G .

Assume that n ≥ 6. Let n = 6k + r, where k ≥ 1 and 0 ≤
r ≤ 5. Let S0 = ∪k−1

j=0(D1(6 j+1) ∪ D2(6 j+3) ∪ D3(6 j+5)). Then 
|S0| = 6kt + 3k.

If r = 0, then S = S0 ∪ (∪t−1
i=0{v(3i+2)n}) is a LTDS of or-

der 6kt + 3k + t = λ in G . If r = 1, then S = S0 ∪ D1n
is a LTDS of order 6kt + 3k + 2t + 1 = λ in G . If r = 2, 
then S = S0 ∪ D1(n−1) ∪ (∪t−1

i=0{v(3i+2)n}) is a LTDS of or-
der 6kt + 3k + 3t + 1 = λ in G . If r = 3, then S = S0 ∪
D1(n−2) ∪ D2n is a LTDS of order 6kt + 3k + 4t + 2 = λ in G . 
If r = 4, then S = S0 ∪ D1(n−3) ∪ D2(n−1) ∪ (∪t−1

i=0{v(3i+1)n})
is a LTDS of order 6kt + 3k + 5t + 2 = λ in G . If r = 5, 
then S = S0 ∪ D1(n−4) ∪ D2(n−2) ∪ D3n is a LTDS of order 
6kt + 3k + 6t + 3 = λ in G . This completes the proof.

Theorem 2.3. For any positive integers m, n such that m ≡
2(mod 3) and n ≥ 3,

γ L
t (Cm�Pn) ≤

⎧⎨
⎩

2
5 mn, n = 5 or m = 5,

n ≡ 0(mod 5);
1
3 (m + 1)(n + 1) − 1, otherwise.

Proof. Let G ∼= Cm�Pn , where m = 3t + 2 for a positive 
integer t . For any integers i, j such that 1 ≤ i ≤ 5 and 
1 ≤ j ≤ n, let Dij = V j − ∪t−1

l=0 {v(3l+i) j} and let μ = 1
3 (m +

1)(n + 1) − 1.
If n = 3, then S = (D11 − {vm1}) ∪ D33 is a LTDS of 

order 4t + 3 = μ in G . If n = 4, then S = D11 ∪ D23 ∪
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