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This paper focuses on some considerations on the diagonal function and its applications 
to implement non-modular operations like magnitude comparison and sign detection in 
residue number system (RNS), recently proposed in the literature. According to our results, 
any implementation involving the diagonal function proposed to date results in excessive 
hardware overhead and delay, which make it impractical from the application point of 
view, so that it cannot compete with more traditional approaches.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The residue number system (RNS) is a non-positional 
number system whose inherently parallel nature enables 
very high data throughput to be obtained owing to very 
fast virtually carry-free arithmetic [1]. Three basic arith-
metic operations (add, subtract, and multiply) are easily 
implemented in RNS and performed on operands signif-
icantly shorter than the dynamic range of RNS. On the 
other hand, the difficulties with implementations of some 
non-modular operations in RNS (such as division, magni-
tude comparison, sign detection, and overflow detection) 
have been the reasons for limited applications of the RNS.

Recall that an RNS is defined by a set of n positive inte-
gers {m1, m2, . . . , mn} which are pairwise relatively prime. 
The dynamic range M of the RNS with n moduli, i.e., the 
number of different integers that can be uniquely repre-
sented in the RNS, is given by M = ∏n

i=1 mi . In an RNS, 
a numerical value of a natural number X in the range 
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[0, M − 1] is represented by an n-tuple {x1, x2, . . . , xn}, 
whose components are the residues of X with respect to 
an ordered set of moduli mi , where xi = X mod mi = |X |mi , 
0 ≤ |X |mi ≤ mi − 1, and i = 1, 2, . . . , n. The number of bits 
needed to represent residues mod mi and M will be de-
noted ai = �log2 mi� and a = �log2 M�, respectively.

Conceptually the most obvious approaches to execute 
non-modular operations in RNS are based on mixed radix 
conversion (MRC) and the Chinese remainder theorem
(CRT) [1]. However, the MRC requires n(n − 1)/2 look-up 
tables for its implementation and n −1 cycles for its execu-
tion, whereas the CRT requires an n-operand adder modulo 
a large number M with inputs provided e.g. by n look-up 
tables. Some drawbacks of the methods relying on these 
approaches have motivated researchers to consider some 
alternative solutions to implement non-modular RNS oper-
ations in hardware.

As for the magnitude comparison of two numbers X =
{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} (0 ≤ X, Y ≤ M −1), 
which is of our interest here, the most obvious approach 
relies on the residue-to-binary conversion of X and Y fol-
lowed by the comparison of the positional representations 
of X and Y . Throughout the years, several new mathemat-
ical concepts have been proposed in attempt to facilitate 

http://dx.doi.org/10.1016/j.ipl.2014.12.003
0020-0190/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.12.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:stanislaw.piestrak@univ-lorraine.fr
http://dx.doi.org/10.1016/j.ipl.2014.12.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.12.003&domain=pdf


454 S.J. Piestrak / Information Processing Letters 115 (2015) 453–457

execution of difficult operations in RNS, and in particu-
lar magnitude comparison [2–6]. One group of approaches 
relies on using the ‘core function’ introduced in [2]. Ac-
cording to [2], in most cases it suffices to compare the 
values of the core functions for the two numbers but, 
unfortunately, for some ‘critical core’ values, the magni-
tude comparison requires a further time-consuming iter-
ative process. Then, Miller et al. [3] have attempted to 
resolve the latter problem by using a redundant modu-
lus which, however, not only reduces the useful dynamic 
range of the RNS but also introduces significant hardware 
overhead. Finally, Gonnella [4] has suggested an alterna-
tive definition of the core function and introduced the so-
called ‘skin function’ which measures the non-linearity of 
the core function. As a result, non-modular operations in 
RNS (like magnitude comparison) can be executed: (i) in 
parallel for non-‘critical-core’ regions (provided that the 
dynamic range is slightly restricted to avoid critical cores); 
and (ii) iteratively for ‘critical-core’ regions of the dynamic 
range of the RNS (which is a sequential process however). 
The other group of approaches relies on using the ‘diag-
onal function’ considered in [5,6]. The basic architecture 
of the magnitude comparator of [5] was generalized in [6], 
where new RNS architectures for the effective implementa-
tion of the diagonal function were proposed. The superior-
ity of the new architectures for magnitude comparison was 
claimed with respect to traditional approaches in terms of 
hardware amount and time delay.

The purpose of this paper is to comment on a few 
aspects of various implementations of the diagonal func-
tion and their usefulness for magnitude comparison in the 
RNS. The first one is that most delay assumptions regard-
ing basic circuits are underestimated as a matter of fact. 
The second one is that the hardware complexity of some 
blocks has not been taken into account. It means that 
all presented delay and hardware complexity evaluations 
are misleading and that the trivial magnitude comparator 
based on any converter from RNS to the positional sys-
tem followed by a comparator remains the best solution. 
Finally, some hidden drawbacks of the sum of quotients 
technique (SQT) used both in [5] and [6] are revealed.

2. Magnitude comparison using diagonal function

The ‘diagonal function’ is a theoretical concept intro-
duced in [5] and extended in [6] to improve performance 
of magnitude comparison and other non-modular opera-
tions in the RNS. It is defined as:

D(X) =
∣∣∣∣∣

n∑
i=1

ki · xi

∣∣∣∣∣
SQ

, (1)

where: the sum of quotients SQ = ∑n
i=1 M/mi is called 

the ‘diagonal modulus’ of the RNS; and ki = |−1/mi |SQ , 
i = 1, 2, . . . , n (|1/mi |SQ is the multiplicative inverse of mi

modulo SQ , i.e. |ki · mi |SQ = 1). The basic magnitude com-
parison algorithm of X and Y using diagonal function, 
presented in [5], relies on the following properties of the 
diagonal function:

Fig. 1. Implementation of the basic magnitude comparison algorithm using 
diagonal function of [5].

1. D(X) < D(Y ) ⇒ X < Y ;
2. D(X) > D(Y ) ⇒ X > Y ;

3. D(X) = D(Y ) ⇒
{ xi < yi ⇒ X < Y ;

xi > yi ⇒ X > Y ;
xi = yi ⇒ X = Y .

To reduce delay, we suggest the hardware implementation 
of the basic magnitude comparison algorithm using diago-
nal function of [5], as shown in Fig. 1. For the case 3, we 
explicitly recommend to select for comparison the small-
est modulus mi with the minimum length �log2 mi� of 
operands; henceforth, without loss of generality, it is as-
sumed that m1 = min1≤i≤n{mi}. Compared to delay esti-
mations provided in [6], the scheme of Fig. 1 entails two 
modifications: (i) because two comparators of D(X) vs. 
D(Y ) and x1 vs. y1 can operate separately and in paral-
lel, it suffices to take into account only the delay of the 
former; (ii) two extra gate levels of the final AND-OR gates 
must be included. Obviously, the circuit that implements 
the diagonal function is used twice for X and Y to pro-
duce D(X) and D(Y ), prior the comparison D(X) vs. D(Y )

can take place (similar principle applies to all other meth-
ods considered here).

3. Delay assumptions

Here, we shall follow the same notation as already used 
in [5,6]. The basic blocks used for magnitude compari-
son in RNS are: MOMA(n, a) — a multi-operand modu-
lar adder (MOMA) for n operands with a-bit word length 
(with a time delay denoted tMOMA(n,a)); L(l, a) — a look-
up table of 2l locations with a-bit output word length 
(with a time delay denoted tL(l,a)); C(a) — a binary com-
parator with a-bit word length (with a time delay de-
noted tC(a)). In all complexity evaluations the same MOMA 
from [7], used also in [6], will be used here. It is built us-
ing the tree of carry-save adders (CSAs) followed by the 
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