
Information Processing Letters 115 (2015) 453–457

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A note on RNS architectures for the implementation of the

diagonal function

Stanisław J. Piestrak 1

Institut Jean Lamour (UMR 7198 CNRS)/Université de Lorraine, Res. Team 406 MAE, Faculté des Sciences et Technologies, BP 70239, F-54506
Vandœuvre Lès Nancy, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 July 2009
Received in revised form 26 November 2014
Accepted 2 December 2014
Available online 9 December 2014
Communicated by A. Tarlecki

Keywords:
Computer architecture
Parallel processing
Residue number system

This paper focuses on some considerations on the diagonal function and its applications
to implement non-modular operations like magnitude comparison and sign detection in
residue number system (RNS), recently proposed in the literature. According to our results,
any implementation involving the diagonal function proposed to date results in excessive
hardware overhead and delay, which make it impractical from the application point of
view, so that it cannot compete with more traditional approaches.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The residue number system (RNS) is a non-positional
number system whose inherently parallel nature enables
very high data throughput to be obtained owing to very
fast virtually carry-free arithmetic [1]. Three basic arith-
metic operations (add, subtract, and multiply) are easily
implemented in RNS and performed on operands signif-
icantly shorter than the dynamic range of RNS. On the
other hand, the difficulties with implementations of some
non-modular operations in RNS (such as division, magni-
tude comparison, sign detection, and overflow detection)
have been the reasons for limited applications of the RNS.

Recall that an RNS is defined by a set of n positive inte-
gers {m1, m2, . . . , mn} which are pairwise relatively prime.
The dynamic range M of the RNS with n moduli, i.e., the
number of different integers that can be uniquely repre-
sented in the RNS, is given by M = ∏n

i=1 mi . In an RNS,
a numerical value of a natural number X in the range

E-mail address: stanislaw.piestrak@univ-lorraine.fr.
1 Part of this research was done when the author was on leave with

IRISA/INRIA, Res. Team CAIRN, 6, rue de Kérampont, 22300 Lannion,
France.

[0, M − 1] is represented by an n-tuple {x1, x2, . . . , xn},
whose components are the residues of X with respect to
an ordered set of moduli mi , where xi = X mod mi = |X |mi ,
0 ≤ |X |mi ≤ mi − 1, and i = 1, 2, . . . , n. The number of bits
needed to represent residues mod mi and M will be de-
noted ai = �log2 mi� and a = �log2 M�, respectively.

Conceptually the most obvious approaches to execute
non-modular operations in RNS are based on mixed radix
conversion (MRC) and the Chinese remainder theorem
(CRT) [1]. However, the MRC requires n(n − 1)/2 look-up
tables for its implementation and n −1 cycles for its execu-
tion, whereas the CRT requires an n-operand adder modulo
a large number M with inputs provided e.g. by n look-up
tables. Some drawbacks of the methods relying on these
approaches have motivated researchers to consider some
alternative solutions to implement non-modular RNS oper-
ations in hardware.

As for the magnitude comparison of two numbers X =
{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} (0 ≤ X, Y ≤ M −1),
which is of our interest here, the most obvious approach
relies on the residue-to-binary conversion of X and Y fol-
lowed by the comparison of the positional representations
of X and Y . Throughout the years, several new mathemat-
ical concepts have been proposed in attempt to facilitate

http://dx.doi.org/10.1016/j.ipl.2014.12.003
0020-0190/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.12.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:stanislaw.piestrak@univ-lorraine.fr
http://dx.doi.org/10.1016/j.ipl.2014.12.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.12.003&domain=pdf

454 S.J. Piestrak / Information Processing Letters 115 (2015) 453–457

execution of difficult operations in RNS, and in particu-
lar magnitude comparison [2–6]. One group of approaches
relies on using the ‘core function’ introduced in [2]. Ac-
cording to [2], in most cases it suffices to compare the
values of the core functions for the two numbers but,
unfortunately, for some ‘critical core’ values, the magni-
tude comparison requires a further time-consuming iter-
ative process. Then, Miller et al. [3] have attempted to
resolve the latter problem by using a redundant modu-
lus which, however, not only reduces the useful dynamic
range of the RNS but also introduces significant hardware
overhead. Finally, Gonnella [4] has suggested an alterna-
tive definition of the core function and introduced the so-
called ‘skin function’ which measures the non-linearity of
the core function. As a result, non-modular operations in
RNS (like magnitude comparison) can be executed: (i) in
parallel for non-‘critical-core’ regions (provided that the
dynamic range is slightly restricted to avoid critical cores);
and (ii) iteratively for ‘critical-core’ regions of the dynamic
range of the RNS (which is a sequential process however).
The other group of approaches relies on using the ‘diag-
onal function’ considered in [5,6]. The basic architecture
of the magnitude comparator of [5] was generalized in [6],
where new RNS architectures for the effective implementa-
tion of the diagonal function were proposed. The superior-
ity of the new architectures for magnitude comparison was
claimed with respect to traditional approaches in terms of
hardware amount and time delay.

The purpose of this paper is to comment on a few
aspects of various implementations of the diagonal func-
tion and their usefulness for magnitude comparison in the
RNS. The first one is that most delay assumptions regard-
ing basic circuits are underestimated as a matter of fact.
The second one is that the hardware complexity of some
blocks has not been taken into account. It means that
all presented delay and hardware complexity evaluations
are misleading and that the trivial magnitude comparator
based on any converter from RNS to the positional sys-
tem followed by a comparator remains the best solution.
Finally, some hidden drawbacks of the sum of quotients
technique (SQT) used both in [5] and [6] are revealed.

2. Magnitude comparison using diagonal function

The ‘diagonal function’ is a theoretical concept intro-
duced in [5] and extended in [6] to improve performance
of magnitude comparison and other non-modular opera-
tions in the RNS. It is defined as:

D(X) =
∣∣∣∣∣

n∑
i=1

ki · xi

∣∣∣∣∣
SQ

, (1)

where: the sum of quotients SQ = ∑n
i=1 M/mi is called

the ‘diagonal modulus’ of the RNS; and ki = |−1/mi |SQ ,
i = 1, 2, . . . , n (|1/mi |SQ is the multiplicative inverse of mi

modulo SQ , i.e. |ki · mi |SQ = 1). The basic magnitude com-
parison algorithm of X and Y using diagonal function,
presented in [5], relies on the following properties of the
diagonal function:

Fig. 1. Implementation of the basic magnitude comparison algorithm using
diagonal function of [5].

1. D(X) < D(Y) ⇒ X < Y ;
2. D(X) > D(Y) ⇒ X > Y ;

3. D(X) = D(Y) ⇒
{ xi < yi ⇒ X < Y ;

xi > yi ⇒ X > Y ;
xi = yi ⇒ X = Y .

To reduce delay, we suggest the hardware implementation
of the basic magnitude comparison algorithm using diago-
nal function of [5], as shown in Fig. 1. For the case 3, we
explicitly recommend to select for comparison the small-
est modulus mi with the minimum length �log2 mi� of
operands; henceforth, without loss of generality, it is as-
sumed that m1 = min1≤i≤n{mi}. Compared to delay esti-
mations provided in [6], the scheme of Fig. 1 entails two
modifications: (i) because two comparators of D(X) vs.
D(Y) and x1 vs. y1 can operate separately and in paral-
lel, it suffices to take into account only the delay of the
former; (ii) two extra gate levels of the final AND-OR gates
must be included. Obviously, the circuit that implements
the diagonal function is used twice for X and Y to pro-
duce D(X) and D(Y), prior the comparison D(X) vs. D(Y)

can take place (similar principle applies to all other meth-
ods considered here).

3. Delay assumptions

Here, we shall follow the same notation as already used
in [5,6]. The basic blocks used for magnitude compari-
son in RNS are: MOMA(n, a) — a multi-operand modu-
lar adder (MOMA) for n operands with a-bit word length
(with a time delay denoted tMOMA(n,a)); L(l, a) — a look-
up table of 2l locations with a-bit output word length
(with a time delay denoted tL(l,a)); C(a) — a binary com-
parator with a-bit word length (with a time delay de-
noted tC(a)). In all complexity evaluations the same MOMA
from [7], used also in [6], will be used here. It is built us-
ing the tree of carry-save adders (CSAs) followed by the

Download	English	Version:

https://daneshyari.com/en/article/427250

Download	Persian	Version:

https://daneshyari.com/article/427250

Daneshyari.com

https://daneshyari.com/en/article/427250
https://daneshyari.com/article/427250
https://daneshyari.com/

