# Rainbow 2-Connection Numbers of Cayley Graphs 

Zaiping Lu, Yingbin Ma*<br>Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, PR China

## A R T I CLE INFO

## Article history:

Received 10 June 2014
Received in revised form 5 December 2014
Accepted 13 December 2014
Available online 17 December 2014
Communicated by X . Wu

## Keywords:

Edge-coloring
Rainbow path
Rainbow 2-connection number
Cayley graph
Interconnection networks


#### Abstract

A path in an edge colored graph is said to be a rainbow path if no two edges on this path share the same color. For an $l$-connected graph $\Gamma$ and an integer $k$ with $1 \leq k \leq l$, the rainbow $k$-connection number of $\Gamma$ is the minimum number of colors required to color the edges of $\Gamma$ such that any two distinct vertices of $\Gamma$ are connected by $k$ internally disjoint rainbow paths. In this paper, a method is provided for bounding the rainbow 2 -connection numbers of graphs with certain structural properties. Using this method, we consider the rainbow 2 -connection numbers of Cayley graphs, especially, those defined on abelian groups and dihedral groups.


© 2014 Elsevier B.V. All rights reserved.

## 1. Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the notation and terminology of [2] for those not described here.

For a graph $\Gamma$, we denote by $V(\Gamma)$ and $E(\Gamma)$ the vertex set and edge set of $\Gamma$, respectively. An edge-coloring of a graph $\Gamma$ is a mapping from $E(\Gamma)$ to some finite set of colors. A path in an edge colored graph is said to be a rainbow path if no two edges on this path share the same color. Let $\Gamma$ be an edge colored $l$-connected graph, where $l$ is a positive integer. For $1 \leq k \leq l$, the graph $\Gamma$ is rainbow $k$-connected if any two distinct vertices of $\Gamma$ are connected by $k$ internally disjoint rainbow paths, while the coloring is called a rainbow $k$-coloring. The rainbow $k$-connection number of $\Gamma$, denoted by $r_{k}(\Gamma)$, is the minimum number of colors required to color the edges of $\Gamma$ to make the graph rainbow $k$-connected. For simplicity, we write $r c(\Gamma)$ for $r c_{1}(\Gamma)$ and call it rainbow connection number. A well-known

[^0]theorem of Menger [14] shows that in every $l$-connected graph $\Gamma$ with $l \geq 1$, there exist $k$ internally disjoint paths connecting every two distinct vertices $u$ and $v$ for every integer $k$ with $1 \leq k \leq l$. By coloring the edges of $\Gamma$ with distinct colors, we know that every two distinct vertices of $\Gamma$ are connected by $k$ internally disjoint rainbow paths, and thus the function $r c_{k}(\Gamma)$ is well-defined for every $1 \leq k \leq l$. An easy observation is that $r c_{k}(\Gamma) \leq r c_{k}(\Sigma)$ for each $l$-connected spanning subgraph $\Sigma$ of the graph $\Gamma$. We note also the trivial fact that if $\mathrm{C}_{n}$ is a cycle with $n \geq 3$, then $r c_{2}\left(\mathrm{C}_{n}\right)=n$.

The concept of rainbow $k$-connection number was first introduced by Chartrand et al. ([3] for $k=1$, and [4] for general $k$ ). Since then, a considerable amount of research has been carried out towards the function $r c_{k}(\Gamma)$, see [12] for a survey on this topic. Chartrand et al. [4] proved that for every integer $k \geq 2$, there exists an integer $f(k)$ such that if $n \geq f(k)$, then $r c_{k}\left(\mathrm{~K}_{n}\right)=2$. With a similar method, Li and Sun [11] obtained that for every integer $k \geq 2$, there exists an integer $g(k)=2 k\left\lceil\frac{k}{2}\right\rceil$ such that $r c_{k}\left(\mathrm{~K}_{n, n}\right)=3$ for any $n \geq g(k)$. Fujita et al. [6] and He et al. [8] investigated the rainbow $k$-connection number of random graphs. In particular, it was shown in [10] that if $\Gamma$ is a 2 -connected graph with $n$ vertices, then $r c_{2}(\Gamma) \leq n$ with equality if and only if $\Gamma$ is a cycle of order $n$.

Let $G$ be a finite group with identity element 1 . Let $S$ be a subset of $G$ such that $1 \notin S=S^{-1}:=\left\{s^{-1} \mid s \in S\right\}$. The Cayley graph $\operatorname{Cay}(G, S)$ is defined on $G$ such that two 'vertices' $g$ and $h$ are adjacent if and only if $g^{-1} h \in S$. Hence $\operatorname{Cay}(G, S)$ is a well-defined simple regular graph of valency $|S|$. It is well-known that $\operatorname{Cay}(G, S)$ is connected if and only if $S$ is a generating set of $G$. In a Cayley graph Cay $(G, S)$, an edge $\{g, h\}$ is called an $s$-edge if $g^{-1} h$ or $h^{-1} g$ equals some $s$ in $S$.

Cayley graphs have been an active topic in algebraic graph theory for a long time. Actually, interconnection networks are often modeled by highly symmetric Cayley graphs [1]. The rainbow connection number of a graph can be applied to measure the safety of a network. Thus the object of the rainbow connection numbers of Cayley graphs should be meaningful. Li et al. [9], Lu and Ma [13] discussed the rainbow connection numbers of Cayley graphs. This motivates us to consider the rainbow 2-connection numbers of Cayley graphs. In this paper, we establish a lemma for bounding the rainbow 2-connection numbers of graphs satisfying certain structural properties. Using this lemma, we consider the rainbow 2-connection numbers of Cayley graphs, especially, those defined on abelian groups and on dihedral groups.

## 2. Rainbow 2-connection numbers of Cayley graphs

Let $\Gamma$ be a graph. For $U, V \subseteq V(\Gamma)$, we denote by $\Gamma[U, V]$ the subgraph on $U \cup V$ with edge set $\{\{u, v\} \in$ $E(\Gamma) \mid u \in U, v \in V\}$. For a partition $\mathcal{B}=\left\{U_{0}, U_{1}, \cdots\right.$, $\left.U_{m-1}\right\}$ of $V(\Gamma)$, define a graph $\Gamma_{\mathcal{B}}$ with vertex set $\mathcal{B}$ such that $U_{i}, U_{j} \in \mathcal{B}$ are adjacent in $\Gamma_{\mathcal{B}}$ if and only if some $u \in U_{i}$ is adjacent to some $v \in U_{j}$ in $\Gamma$. The graph $\Gamma_{\mathcal{B}}$ is called a quotient graph of $\Gamma$. The following technical lemma is very important.

Lemma 2.1. Let $\Gamma$ be a 2-connected graph. Assume that $V(\Gamma)$ has a partition $\mathcal{B}=\left\{U_{0}, U_{1}, \cdots, U_{m-1}\right\}$ such that $\Gamma_{\mathcal{B}}$ is 2-connected, and for each $i$, the subgraph $\Gamma\left[U_{i}, U_{i}\right]$ is 2-connected.
(i) Suppose that for each pair of adjacent vertices $U_{i}$ and $U_{j}$ in $\Gamma_{\mathcal{B}}$, the subgraph $\Gamma\left[U_{i}, U_{j}\right]$ has no isolate vertices. Then

$$
r c_{2}(\Gamma) \leq \max \left\{r c_{2}\left(\Gamma\left[U_{i}, U_{i}\right]\right) \mid 0 \leq i<m\right\}+r c_{2}\left(\Gamma_{\mathcal{B}}\right)
$$

(ii) Suppose that $E\left(\Gamma\left[U_{i}, U_{i+1}\right]\right) \neq \emptyset$ for $0 \leq i<m$, and every $u \in U_{i}$ is adjacent to some $v \in U_{i-1}$ or some $w \in U_{i+1}$ in $\Gamma$, reading the subscripts modulo $m$. Then

$$
r c_{2}(\Gamma) \leq\left(\max \left\{r c_{2}\left(\Gamma\left[U_{i}, U_{i}\right]\right) \mid 0 \leq i<m\right\}+1\right) m
$$

Proof. Denote $\Gamma_{i}=\Gamma\left[U_{i}, U_{i}\right]$ and $c=\max \left\{r c_{2}\left(\Gamma_{i}\right) \mid 0 \leq\right.$ $i<m\}$.
(i) Let $C$ be a set of $c$ colors and $D$ be a set of $r c_{2}\left(\Gamma_{\mathcal{B}}\right)$ colors with $C \cap D=\emptyset$. For $\Gamma_{\mathcal{B}}$, we choose a rainbow 2-coloring $\bar{\theta}: E\left(\Gamma_{\mathcal{B}}\right) \rightarrow D$. For each graph $\Gamma_{i}$, assign a rainbow 2-coloring $\theta_{i}: E\left(\Gamma_{i}\right) \rightarrow C$. Define an edge-coloring $\theta$ of $\Gamma$ by
$\theta(e)= \begin{cases}\theta_{i}(e) & \text { if } e \in E\left(\Gamma_{i}\right) \text { for } 0 \leq i<m ; \\ \bar{\theta}\left(\left\{U_{i}, U_{j}\right\}\right) & \text { if }\left\{U_{i}, U_{j}\right\} \in E\left(\Gamma_{\mathcal{B}}\right) \text { and } \\ & e \in E\left(\Gamma\left[U_{i}, U_{j}\right]\right) .\end{cases}$
Let $u$ and $v$ be any two distinct vertices of $\Gamma$. If $u$ and $v$ are contained in some $\Gamma_{i}$, then there exist two internally disjoint rainbow paths by means of the rainbow 2-coloring $\theta_{i}$. Suppose $u \in V\left(\Gamma_{i}\right)$ and $v \in V\left(\Gamma_{j}\right)$ satisfying $i \neq j$. In the quotient graph $\Gamma_{\mathcal{B}}$, there exist two internally disjoint rainbow paths connecting $U_{i}$ and $U_{j}$. Denote them by $U_{i}, U_{i_{1}}, U_{i_{2}}, \cdots, U_{i_{s}}, U_{j}$ and $U_{i}, U_{j_{1}}, U_{j_{2}}, \cdots, U_{j_{t}}, U_{j}$. Since $U_{i_{s}}$ and $U_{j}$ are adjacent in $\Gamma_{\mathcal{B}}$, by the assumptions, we know that the subgraph $\Gamma\left[U_{i_{s}}, U_{j}\right]$ has no isolate vertices. Then there exists a vertex $v_{i_{s}} \in U_{i_{s}}$ satisfying $v_{i_{s}} v \in E(\Gamma)$. Similarly, there exist some vertices $v_{i_{r}} \in U_{i_{r}}$ for $1 \leq r \leq s-1$ and $v_{i} \in U_{i}$ such that $v_{i_{s}} v_{i_{s-1}}, v_{i_{s-1}} v_{i_{s-2}}, \cdots, v_{i_{2}} v_{i_{1}}, v_{i_{1}} v_{i} \in E(\Gamma)$. Obviously, $\mathrm{P}^{\prime}=u, \mathrm{P}^{1}, v_{i}, v_{i_{1}}, v_{i_{2}}, \cdots, v_{i_{s}}, v$ is a rainbow path connecting $u$ and $v$, where $\mathrm{P}^{1}$ is a rainbow path between $u$ and $v_{i}$ in $\Gamma_{i}$. Since $U_{i}$ and $U_{j_{1}}$ are adjacent in $\Gamma_{\mathcal{B}}$, by the assumptions, we have that the subgraph $\Gamma\left[U_{i}, U_{j_{1}}\right]$ has no isolate vertices. Thus there exists a vertex $v_{j_{1}} \in U_{j_{1}}$ satisfying $u v_{j_{1}} \in E(\Gamma)$. Similarly, there exist some vertices $v_{j_{r}} \in U_{j_{r}}$ for $2 \leq r \leq t$ and $v_{j} \in U_{j}$ such that $v_{j_{1}} v_{j_{2}}, v_{j_{2}} v_{j_{3}}, \cdots, v_{j_{t-1}} v_{j_{t}}, v_{j_{t}} v_{j} \in E(\Gamma)$. Obviously, $\mathrm{P}^{\prime \prime}=u, v_{j_{1}}, v_{j_{2}}, \cdots, v_{j_{t}}, v_{j}, \mathrm{P}^{2}, v$ is also a rainbow path connecting $u$ and $v$, where $\mathrm{P}^{2}$ is a rainbow path between $v_{j}$ and $v$ in $\Gamma_{j}$. Note that $\mathrm{P}^{\prime}$ and $\mathrm{P}^{\prime \prime}$ are internally disjoint. Thus $\Gamma$ is rainbow 2-connected with the edge-coloring $\theta$, and so $r c_{2}(\Gamma) \leq \max \left\{r c_{2}\left(\Gamma\left[U_{i}, U_{i}\right]\right) \mid 0 \leq i<m\right\}+r c_{2}\left(\Gamma_{\mathcal{B}}\right)$.
(ii) Consider the spanning subgraph $\Sigma$ of $\Gamma$ with edge set
$E(\Sigma)=\left(\bigcup_{i=0}^{m-1} E\left(\Gamma_{i}\right)\right) \cup\left(\bigcup_{i=0}^{m-1} E\left(\Gamma\left[U_{i}, U_{i+1}\right]\right)\right)$.
Since $E\left(\Gamma\left[U_{i}, U_{i+1}\right]\right) \neq \emptyset$ for $0 \leq i<m$, we obtain that $\Sigma_{\mathcal{B}}$ is a cycle of length $m$. Let $C_{0}, C_{1}, \cdots, C_{m-1}$ be $c$-sets of colors such that $C_{i} \cap C_{j}=\emptyset$ if $0 \leq i<j<m$. For each graph $\Gamma_{i}$, since $r c_{2}\left(\Gamma_{i}\right) \leq c$, we assign a rainbow 2 -coloring $\eta_{i}: E\left(\Gamma_{i}\right) \rightarrow C_{i}$. Choose $m$ colors $c_{1}, c_{2}, \cdots, c_{m}$ which are not used above. Define an edge-coloring $\eta$ of $\Sigma$ as follows:
$\eta(e)= \begin{cases}\eta_{i}(e) & \text { if } e \in E\left(\Gamma_{i}\right) \text { for } 0 \leq i<m ; \\ c_{i} & \text { if } e \in E\left(\Gamma\left[U_{i-1}, U_{i}\right]\right) \text { for } 1 \leq i \leq m .\end{cases}$
Let $u$ and $v$ be any two distinct vertices of $\Gamma$. If $u$ and $v$ are contained in some $U_{i}$ for $0 \leq i \leq m-1$, then there exist two internally disjoint rainbow paths connecting $u$ and $v$ by means of the rainbow 2 -coloring $\eta_{i}$. Without loss of generality, we assume that $u \in U_{i}$ and $v \in U_{j}$ with $0 \leq i \neq j \leq m-1$. Then there also exist two internally disjoint rainbow paths connecting $u$ and $v$ since $\Sigma_{\mathcal{B}}$ is a cycle and the colors $c_{1}, c_{2}, \cdots, c_{m}$ are not used in $\Gamma_{i}$ for $0 \leq$ $i \leq m-1$. Hence $\Gamma$ is rainbow 2 -connected, and so part (ii) follows from enumerating the number of colors used for $\eta$.

Let $G$ be a group and $N$ a normal subgroup of $G$. Then all (left) cosets of $N$ in $G$ form a group under the product

# https://daneshyari.com/en/article/427256 

Download Persian Version:

## https://daneshyari.com/article/427256

## Daneshyari.com


[^0]:    से This work partially supported by the NSFC (No. 11271267, No. 11371204 and No. 11171368).

    * Corresponding author.

    E-mail address: mayingbincw@gmail.com (Y. Ma).

