Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Rainbow 2-Connection Numbers of Cayley Graphs ☆

Zaiping Lu, Yingbin Ma*

Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, PR China

ARTICLE INFO

Article history: Received 10 June 2014 Received in revised form 5 December 2014 Accepted 13 December 2014 Available online 17 December 2014 Communicated by X. Wu

Keywords: Edge-coloring Rainbow path Rainbow 2-connection number Cayley graph Interconnection networks

ABSTRACT

A path in an edge colored graph is said to be a rainbow path if no two edges on this path share the same color. For an *l*-connected graph Γ and an integer k with $1 \le k \le l$, the rainbow k-connection number of Γ is the minimum number of colors required to color the edges of Γ such that any two distinct vertices of Γ are connected by k internally disjoint rainbow paths. In this paper, a method is provided for bounding the rainbow 2-connection numbers of Gayley graphs, especially, those defined on abelian groups and dihedral groups.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the notation and terminology of [2] for those not described here.

For a graph Γ , we denote by $V(\Gamma)$ and $E(\Gamma)$ the vertex set and edge set of Γ , respectively. An *edge-coloring* of a graph Γ is a mapping from $E(\Gamma)$ to some finite set of colors. A path in an edge colored graph is said to be a *rainbow path* if no two edges on this path share the same color. Let Γ be an edge colored *l*-connected graph, where *l* is a positive integer. For $1 \le k \le l$, the graph Γ is *rainbow k*-connected if any two distinct vertices of Γ are connected by *k* internally disjoint rainbow paths, while the coloring is called a *rainbow k*-coloring. The *rainbow k*-connection number of Γ , denoted by $r_k(\Gamma)$, is the minimum number of colors required to color the edges of Γ to make the graph rainbow *k*-connected. For simplicity, we write $rc(\Gamma)$ for $rc_1(\Gamma)$ and call it *rainbow connection number*. A well-known

* Corresponding author.

E-mail address: mayingbincw@gmail.com (Y. Ma).

http://dx.doi.org/10.1016/j.ipl.2014.12.007 0020-0190/© 2014 Elsevier B.V. All rights reserved. theorem of Menger [14] shows that in every *l*-connected graph Γ with $l \ge 1$, there exist *k* internally disjoint paths connecting every two distinct vertices *u* and *v* for every integer *k* with $1 \le k \le l$. By coloring the edges of Γ with distinct colors, we know that every two distinct vertices of Γ are connected by *k* internally disjoint rainbow paths, and thus the function $rc_k(\Gamma)$ is well-defined for every $1 \le k \le l$. An easy observation is that $rc_k(\Gamma) \le rc_k(\Sigma)$ for each *l*-connected spanning subgraph Σ of the graph Γ . We note also the trivial fact that if C_n is a cycle with $n \ge 3$, then $rc_2(C_n) = n$.

The concept of rainbow *k*-connection number was first introduced by Chartrand et al. ([3] for k = 1, and [4] for general *k*). Since then, a considerable amount of research has been carried out towards the function $rc_k(\Gamma)$, see [12] for a survey on this topic. Chartrand et al. [4] proved that for every integer $k \ge 2$, there exists an integer f(k) such that if $n \ge f(k)$, then $rc_k(K_n) = 2$. With a similar method, Li and Sun [11] obtained that for every integer $k \ge 2$, there exists an integer $g(k) = 2k \lceil \frac{k}{2} \rceil$ such that $rc_k(K_{n,n}) = 3$ for any $n \ge g(k)$. Fujita et al. [6] and He et al. [8] investigated the rainbow *k*-connection number of random graphs. In particular, it was shown in [10] that if Γ is a 2-connected graph with *n* vertices, then $rc_2(\Gamma) \le n$ with equality if and only if Γ is a cycle of order *n*.

CrossMark

 $^{^{\}star}$ This work partially supported by the NSFC (No. 11271267, No. 11371204 and No. 11171368).

Let *G* be a finite group with identity element 1. Let *S* be a subset of *G* such that $1 \notin S = S^{-1} := \{s^{-1} \mid s \in S\}$. The *Cayley graph* Cay(*G*, *S*) is defined on *G* such that two 'vertices' *g* and *h* are adjacent if and only if $g^{-1}h \in S$. Hence Cay(*G*, *S*) is a well-defined simple regular graph of valency |S|. It is well-known that Cay(*G*, *S*) is connected if and only if *S* is a generating set of *G*. In a Cayley graph Cay(*G*, *S*), an edge $\{g, h\}$ is called an *s*-edge if $g^{-1}h$ or $h^{-1}g$ equals some *s* in *S*.

Cayley graphs have been an active topic in algebraic graph theory for a long time. Actually, interconnection networks are often modeled by highly symmetric Cayley graphs [1]. The rainbow connection number of a graph can be applied to measure the safety of a network. Thus the object of the rainbow connection numbers of Cayley graphs should be meaningful. Li et al. [9], Lu and Ma [13] discussed the rainbow connection numbers of Cayley graphs. This motivates us to consider the rainbow 2-connection numbers of Cayley graphs. In this paper, we establish a lemma for bounding the rainbow 2-connection numbers of graphs satisfying certain structural properties. Using this lemma, we consider the rainbow 2-connection numbers of Cayley graphs, especially, those defined on abelian groups and on dihedral groups.

2. Rainbow 2-connection numbers of Cayley graphs

Let Γ be a graph. For $U, V \subseteq V(\Gamma)$, we denote by $\Gamma[U, V]$ the subgraph on $U \cup V$ with edge set $\{\{u, v\} \in E(\Gamma) \mid u \in U, v \in V\}$. For a partition $\mathcal{B} = \{U_0, U_1, \cdots, U_{m-1}\}$ of $V(\Gamma)$, define a graph $\Gamma_{\mathcal{B}}$ with vertex set \mathcal{B} such that $U_i, U_j \in \mathcal{B}$ are adjacent in $\Gamma_{\mathcal{B}}$ if and only if some $u \in U_i$ is adjacent to some $v \in U_j$ in Γ . The graph $\Gamma_{\mathcal{B}}$ is called a *quotient graph* of Γ . The following technical lemma is very important.

Lemma 2.1. Let Γ be a 2-connected graph. Assume that $V(\Gamma)$ has a partition $\mathcal{B} = \{U_0, U_1, \dots, U_{m-1}\}$ such that $\Gamma_{\mathcal{B}}$ is 2-connected, and for each *i*, the subgraph $\Gamma[U_i, U_i]$ is 2-connected.

 (i) Suppose that for each pair of adjacent vertices U_i and U_j in Γ_B, the subgraph Γ[U_i, U_j] has no isolate vertices. Then

$$rc_2(\Gamma) \le \max\left\{rc_2\left(\Gamma[U_i, U_i]\right) \mid 0 \le i < m\right\} + rc_2(\Gamma_{\mathcal{B}}).$$

(ii) Suppose that E(Γ[U_i, U_{i+1}]) ≠ Ø for 0 ≤ i < m, and every u ∈ U_i is adjacent to some v ∈ U_{i-1} or some w ∈ U_{i+1} in Γ, reading the subscripts modulo m. Then

$$rc_2(\Gamma) \le \left(\max\left\{ rc_2\left(\Gamma[U_i, U_i] \right) \mid 0 \le i < m \right\} + 1 \right) m.$$

Proof. Denote $\Gamma_i = \Gamma[U_i, U_i]$ and $c = \max\{rc_2(\Gamma_i) \mid 0 \le i < m\}$.

(i) Let *C* be a set of *c* colors and *D* be a set of $rc_2(\Gamma_B)$ colors with $C \cap D = \emptyset$. For Γ_B , we choose a rainbow 2-coloring $\overline{\theta} : E(\Gamma_B) \to D$. For each graph Γ_i , assign a rainbow 2-coloring $\theta_i : E(\Gamma_i) \to C$. Define an edge-coloring θ of Γ by

$$\theta(e) = \begin{cases} \theta_i(e) & \text{if } e \in E(\Gamma_i) \text{ for } 0 \le i < m; \\ \bar{\theta}(\{U_i, U_j\}) & \text{if } \{U_i, U_j\} \in E(\Gamma_{\mathcal{B}}) \text{ and} \\ e \in E(\Gamma[U_i, U_j]). \end{cases}$$

Let u and v be any two distinct vertices of Γ . If uand v are contained in some Γ_i , then there exist two internally disjoint rainbow paths by means of the rainbow 2-coloring θ_i . Suppose $u \in V(\Gamma_i)$ and $v \in V(\Gamma_i)$ satisfying $i \neq j$. In the quotient graph $\Gamma_{\mathcal{B}}$, there exist two internally disjoint rainbow paths connecting U_i and U_j . Denote them by $U_i, U_{i_1}, U_{i_2}, \dots, U_{i_s}, U_j$ and $U_i, U_{j_1}, U_{j_2}, \dots, U_{j_t}, U_j$. Since U_{i_s} and U_j are adjacent in $\Gamma_{\mathcal{B}}$, by the assumptions, we know that the subgraph $\Gamma[U_{i_s}, U_j]$ has no isolate vertices. Then there exists a vertex $v_{i_s} \in U_{i_s}$ satisfying $v_{i_s} v \in E(\Gamma)$. Similarly, there exist some vertices $v_{i_r} \in U_{i_r}$ for $1 \le r \le s - 1$ and $v_i \in U_i$ such that $v_{i_s}v_{i_{s-1}}, v_{i_{s-1}}v_{i_{s-2}}, \dots, v_{i_2}v_{i_1}, v_{i_1}v_i \in E(\Gamma)$. Obviously, $P' = u, P^1, v_i, v_{i_1}, v_{i_2}, \cdots, v_{i_s}, v$ is a rainbow path connecting u and v, where P^1 is a rainbow path between *u* and v_i in Γ_i . Since U_i and U_{i_1} are adjacent in $\Gamma_{\mathcal{B}}$, by the assumptions, we have that the subgraph $\Gamma[U_i, U_{i_1}]$ has no isolate vertices. Thus there exists a vertex $v_{j_1} \in U_{j_1}$ satisfying $uv_{j_1} \in E(\Gamma)$. Similarly, there exist some vertices $v_{j_r} \in U_{j_r}$ for $2 \le r \le t$ and $v_j \in U_j$ such that $v_{j_1}v_{j_2}, v_{j_2}v_{j_3}, \dots, v_{j_{t-1}}v_{j_t}, v_{j_t}v_j \in E(\Gamma)$. Obviously, $\mathsf{P}'' = u, v_{j_1}, v_{j_2}, \cdots, v_{j_t}, v_j, \mathsf{P}^2, v$ is also a rainbow path connecting u and v, where P^2 is a rainbow path between v_i and v in Γ_i . Note that P' and P'' are internally disjoint. Thus Γ is rainbow 2-connected with the edge-coloring θ , and so $rc_2(\Gamma) \le \max\{rc_2(\Gamma[U_i, U_i]) \mid 0 \le i < m\} + rc_2(\Gamma_{\mathcal{B}})$.

(ii) Consider the spanning subgraph \varSigma of \varGamma with edge set

$$E(\Sigma) = \left(\bigcup_{i=0}^{m-1} E(\Gamma_i)\right) \cup \left(\bigcup_{i=0}^{m-1} E\left(\Gamma[U_i, U_{i+1}]\right)\right).$$

Since $E(\Gamma[U_i, U_{i+1}]) \neq \emptyset$ for $0 \le i < m$, we obtain that Σ_B is a cycle of length m. Let C_0, C_1, \dots, C_{m-1} be c-sets of colors such that $C_i \cap C_j = \emptyset$ if $0 \le i < j < m$. For each graph Γ_i , since $rc_2(\Gamma_i) \le c$, we assign a rainbow 2-coloring $\eta_i : E(\Gamma_i) \to C_i$. Choose m colors c_1, c_2, \dots, c_m which are not used above. Define an edge-coloring η of Σ as follows:

$$\eta(e) = \begin{cases} \eta_i(e) & \text{if } e \in E(\Gamma_i) \text{ for } 0 \le i < m; \\ c_i & \text{if } e \in E(\Gamma[U_{i-1}, U_i]) \text{ for } 1 \le i \le m. \end{cases}$$

Let *u* and *v* be any two distinct vertices of Γ . If *u* and *v* are contained in some U_i for $0 \le i \le m - 1$, then there exist two internally disjoint rainbow paths connecting *u* and *v* by means of the rainbow 2-coloring η_i . Without loss of generality, we assume that $u \in U_i$ and $v \in U_j$ with $0 \le i \ne j \le m - 1$. Then there also exist two internally disjoint rainbow paths connecting *u* and *v* since Σ_B is a cycle and the colors c_1, c_2, \dots, c_m are not used in Γ_i for $0 \le i \le m - 1$. Hence Γ is rainbow 2-connected, and so part (ii) follows from enumerating the number of colors used for η . \Box

Let *G* be a group and *N* a normal subgroup of *G*. Then all (left) cosets of *N* in *G* form a group under the product

Download English Version:

https://daneshyari.com/en/article/427256

Download Persian Version:

https://daneshyari.com/article/427256

Daneshyari.com