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Manifold learning has become a hot issue in the field of machine learning and data mining. 
There are some algorithms proposed to extract the intrinsic characteristics of different 
type of high-dimensional data by performing nonlinear dimensionality reduction, such as 
ISOMAP, LLE and so on. Most of these algorithms operate in a batch mode and cannot be 
effectively applied when data are collected sequentially. In this paper, we proposed a new 
incremental version of ISOMAP which can use the previous computation results as much 
as possible and effectively update the low dimensional representation of data points as 
many new samples are accumulated. Experimental results on synthetic data as well as real 
world images demonstrate that our approaches can construct an accurate low-dimensional 
representation of the data in an efficient manner.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Data from the real world is of a high-dimensional na-
ture, and so it is very difficult to understand and ana-
lyze. Some linear dimensionality reduction techniques at-
tempted to solve this problem by lowering the data di-
mensionality, such as PCA [8], MDS [18]. But they only 
can solve linear data. Since 2000, manifold learning has be-
come a hot issue in the field of machine learning and data 
mining. Its main goal is to find a smooth low-dimensional 
manifold embedded in nonlinear high-dimensional data 
space. There are some algorithms proposed to extract 
the intrinsic characteristics of different types of high-
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dimensional data, such as ISOMAP [19], LLE [17] and so 
on. These algorithms aim to presever different geometrical 
properties of the data manifold, and formally transform the 
dimensionality reduction problem into an eigen-problem 
of matrices. Therefore, they are often mentioned as spec-
tral embedding methods [21].

Most of these manifold learning algorithms operate in a 
batch mode, meaning that they have no incremental ability 
and all data points are need to be available during train-
ing [12]. However, in applications like video surveillance, 
and speech recognition, where data come sequentially, the 
batch methods seem clumsy: running them repeatedly is 
not only time consuming, but also wasteful to discard pre-
vious results [5]. So it is urgently necessary to develop 
incremental methods to efficiently find intrinsic properties 
of high-dimensional data. As more and more data points 
are obtained, the evolution of data manifold can reveal in-
teresting properties of the data stream [12].

There have been some attempts to create incremen-
tal manifold algorithms, which can be roughly catego-
rized into two groups. One group, known as out-of-sample 
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extension, attempts to parameterize new observations 
based on the assumption that all the known results are 
correct. Out-of-sample extensions for LLE, ISOMAP, LE are 
given by Bengio et al. [2], using kernel tricks to refor-
mulate these algorithms. But the method may fail if the 
data manifold is non-uniformly sampled [16]. The another 
group tries to give more credible results, not only embed-
ding new points but also updating the known results, such 
as incremental LLE [16], incremental Isomap [12], incre-
mental LTSA [11], incremental LE [6], etc. All the recent 
methods in the latter group are restricted to dealing with 
only one new point per running, and thus they are forced 
to rerun as many times as the number of new data points. 
The total cost of the time complexity and memory require-
ment is high and even higher than those of re-running the 
original algorithms. As a further imperfection, the geomet-
ric structure of the manifold may be destroyed if the new 
sample does not lie in original sampled area.

In this paper, an improved incremental version of 
ISOMAP is proposed, which can use the previous compu-
tation results as much as possible and effectively update 
the low dimensional representation of data points as many 
new samples are collected simultaneously. The algorithm 
not only is more fit to the cognitive mechanism in our 
brain, but also improves the efficiency while the accuracy 
of the embedding results are not be decreased obviously. 
The experimental results on both synthetic “Swiss-roll” 
data set and two real images data sets show that the algo-
rithm is feasible.

The corresponding works (main contributions) of our 
approaches include

• An effective method to update the neighborhood graph 
and geodesic distances matrix. Different from ISOMAP 
[19] and its incremental versions [12], the method 
does not re-compute and update k-NN neighborhood 
graph. It keeps the previous neighborhood relations as 
much as possible, only adds the new neighborhood re-
lations related to some new points and deletes the 
original links leading to short circuits. And the method 
also does not update the geodesic distances one by 
one. It only updates the distances of two kinds of 
paths: the paths leading to the conflicting predeces-
sor matrix; the paths including short circuits.

• A simple method to detect the short circuits in the 
neighborhood graph. The method re-estimates all 
weights of the edges in the original neighborhood 
graph in view of the newest “geodesic distance” be-
tween new points and all points (including all the
original points and new points). At the same time, the 
thresholds of the weights are also estimated by com-
puting the maximum distances of two neighborhood 
pitches. If its weight is larger than its threshold, the 
edge can be marked as a short circuits edge.

• A better solution of the incremental eigen-decomposi-
tion problem with increasing matrix size, which com-
putes eigen-values and eigenvectors by subspace itera-
tion with Rayleigh–Ritz acceleration. This differs from 
previous incremental ISOMAP version [12] where only 
one new sample is increased and its coordinate is di-
rectly estimated.

The rest of the paper is organized as follows: Section 2
reviews the related works. Section 3 describes the pro-
posed incremental version of ISOMAP. Section 4 shows 
the complexity of the proposed algorithm and compares it 
with those of ISOMAP and law-IISOMAP. Section 5 presents 
the experimental results and finally Section 6 gives a con-
clusion.

2. Related works

Suppose that M ⊂ R D is a smooth manifold. A set of 
data points {x1, ..., xn} is sampled from it. ISOMAP assumes 
that the data lie on a (Riemannian) manifold and maps xi
to its d-dimensional representation yi in such a way that 
the geodesic distance between xi and x j is as close to the 
Euclidean distance between yi and y j in Rd as possible.

ISOMAP algorithm has three steps:

i. Constructing the neighborhood graph. ISOMAP re-
quires specifying a parameter of the neighborhood: 
k-nearest neighbors (k-NN) or ε-hyper sphere. The 
k-NN version is more common since the sparseness 
of the resulting structures is guaranteed. The weighted 
undirected neighborhood graph NG = (V , E) is con-
structed with the vertex vi ∈ V corresponding to xi . 
An edge e(i, j) between vi and v j exists if xi is a 
neighbor of x j . The weight of e(i, j), denoted by wij , 
is the value of the Euclidean distance. If the set of 
the k-NN neighborhood of xi is denoted by knn(i) and 
the set of indices of the vertices adjacent to vi in G
is denoted by adj(i), then adj(i) is corresponding to 
knn(i) 

⋃{v j |vi ⊂ knn( j)}.
ii. Estimating the geodesic distances. The key assump-

tion is that the geodesic between two points on the 
manifold can be approximated by the shortest path 
between the corresponding vertices in the neighbor-
hood graph. Let gij denote the length of the shortest 
path sp(i, j) between vi and v j . The shortest paths 
can be found by the Dijkstra’s algorithm with differ-
ent source vertices. The shortest paths can be stored 
efficiently by the predecessor matrix Π , where πi j = k
if vk is immediately before v j in sp(i, j). Since gij is 
the approximate geodesic distance between xi and x j , 
we shall call gij the geodesic distance. So the geodesic 
distance matrix G = {gij} is symmetric.

iii. Recovering the embedding results {y1, ...yn} by using 
the classical MDS on the geodesic distances. Let B be 
the target inner product matrix, i.e., the matrix of the 
target inner products between different yi . If restrict-
ing 

∑
i yi = 0, B is recovered as B = −H AH/2, where 

aij = g2
i j , H = In − Jn/n, In is an identity matrix and 

Jn is a matrix with n × n ones. We seek Y T Y to be as 
close to B as possible in the least square sense. Then 
the embedding result Y = diag(

√
λ1...

√
λd)[u1...ud]T

is achieved, where λ1, ..., λd are the d largest eigen-
values of B , with corresponding eigenvectors u1, ..., ud .

3. Incremental ISOMAP

According to the original ISOMAP algorithm, the main 
works in incremental algorithms involve three steps: up-
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