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Parikh’s theorem states that the Parikh image of a context-free language is semilinear or,
equivalently, that every context-free language has the same Parikh image as some regular
language. We present a very simple construction that, given a context-free grammar,
produces a finite automaton recognizing such a regular language.
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The Parikh image of a word w over an alphabet
{ai,...,ay} is the vector (vq,...,vy) € N" such that v;
is the number of occurrences of a; in w. For example,
the Parikh image of ajajaya; over the alphabet {aq, a;, az}
is (2,2,0). The Parikh image of a language is the set of
Parikh images of its words. Parikh images are named af-
ter Rohit Parikh, who in 1966 proved a classical theorem
of formal language theory which also carries his name.
Parikh’s theorem [1] states that the Parikh image of any
context-free language is semilinear. Since semilinear sets
coincide with the Parikh images of regular languages, the
theorem is equivalent to the statement that every context-
free language has the same Parikh image as some regular
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language. For instance, the language {a"b"™ | n > 0} has
the same Parikh image as (ab)*. This statement is also
often referred to as Parikh’s theorem, see e.g. [10], and
in fact it has been considered a more natural formula-
tion [13].

Parikh’s proof of the theorem, as many other sub-
sequent proofs [8,13,12,9,10,2], is constructive: given a
context-free grammar G, the proof produces (at least im-
plicitly) an automaton or regular expression whose lan-
guage has the same Parikh image as L(G). However, the
constructions are relatively complicated, not given in de-
tail, or they yield crude upper bounds, namely automata
of size O(n") for grammars in Chomsky normal form with
n variables (see Section 4 for a detailed discussion). In this
note we present an explicit and very simple construction
that yields an automaton with O(4") states for grammars
in Chomsky normal form, for a lower bound of £2(2"). An
application of the automaton is briefly discussed in Sec-
tion 3: the automaton can be used to algorithmically de-
rive the semilinear set, and, using recent results on Parikh
images of NFAs [15,11], it leads to the best known up-
per bounds on the size of the semilinear set for a given
context-free grammar.
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1. The construction

We follow the notation of [3, Chapter 5]. Let G =
(V,T,P,S) be a context-free grammar with a set V =
{A1,..., Ay} of variables or nonterminals, a set T of ter-
minals, a set P CV x (V UT)* of productions, and an
axiom S € V. We construct a nondeterministic finite au-
tomaton (NFA) whose language has the same Parikh image
as L(G). The transitions of this automaton will be labelled
with words of T*, but note that by adding intermediate
states (when the words have length greater than one) and
removing e-transitions (i.e.,, when the words have length
zero), such an NFA can be easily brought in the more com-
mon form where transition labels are elements of T.

We need to introduce a few notions. Given «o €
(V. UT)*, we denote by ITy () (resp. ITr(«)) the Parikh
image of o where the components not in V (resp. T)
have been projected away. Moreover, we denote by o v
(resp. a/7) the projection of a onto V (resp. T). For in-
stance, if V ={A1, Ay}, T ={a,b,c}, and o = aAybA1A1,
then ITy(a) = (2,1), Mr(@) = (1,1,0) and o;r = ab.
Given o, B € (V UT)*, let P(x, B) be the set of produc-
tions of G that can transform « into B, ie., P(x,pB) =
{(A— y)e P |Tuj,ap € (VUD*: a=a1Auy A B =
apyaz}. If P(o, B) # @ then we call («, B) a step, denoted
by a = 8.

The NFA whose language has the same Parikh image
as L(G) will be a member of the following family:

Definition 1.1. Let G = (V, T, P, S) be a context-free gram-
mar, let n=|V|, and let k > 1. The k-Parikh automaton of
G is the NFA M’é =(Q,T*,8,qo, {qr}) defined as follows:

o Q={(x1.,....%) eN" | Y1, xi <k}

o3 = {UIv(w),yr. [v(B)) | A — y) € P, p):
Iy (o), v (B) € QL

e qo=11v(S);

o qf=1Ily(e) =(0,...,0).

It is easily seen that MK has exactly (":k) states. Fig. 1
shows the 3-Parikh automaton of the context-free gram-
mar with productions Ay — A1Azla, A, — bAzaAjz|cAq
and axiom Ajp. The states are all pairs (x1,x2) such that
X1 + x2 < 3. For instance, transition (0, 2) ba, (0, 3) comes
(among others) from the step AyAy = bAyaA»A;, and can
be interpreted as follows: applying the production A, —
bA,aA; to a word with zero occurrences of A; and two oc-
currences of A, leads to a word with one new occurrence
of a and b, zero occurrences of Ai, and three occurrences
of Az.

We define the degree of G by m := —1 + max{|y,v|:
(A— y) e P}; ie, m+1 is the maximal number of vari-
ables on the right-hand sides of the productions. For in-
stance, the degree of the grammar in Fig. 1 is 1. Notice that
if G is in Chomsky normal form then m <1, and m < 0 iff
G is regular.

In the rest of the note we prove:

Theorem 1.1. If G is a context-free grammar with n variables
and degree m, then L(G) and L(M'&m“) have the same Parikh
image.

Fig. 1. The 3-Parikh automaton of Ay — A1Azla, Ay — bAyaA;|cA; with
S=A;.

For the grammar of Fig. 1 we have n=2 and m =1,
and Theorem 1.1 yields L(G) = L(M3). So the language of
the automaton of the figure has the same Parikh image as
the language of the grammar.

Using standard properties of binomial coefficients, for
M'&m“ and m > 1 we get an upper bound of 2-(m+1)"-e"
states. For m < 1 (e.g. for grammars in Chomsky normal
form), the automaton M{'! has (2”:1) < 221 e 04"
states. On the other hand, for every n > 1 the grammar G,
in Chomsky normal with productions {Ay — Ax_1 Ak—1 |
2<k<n}U{A; — a} and axiom S = A, satisfies L(G,) =
{aznfl}, and therefore the smallest Parikh-equivalent NFA
has 2"~ + 1 states. This shows that our construction is
close to optimal.

2. The proof

Given L1, Ly C T*, we write L1 =g Ly (resp. L1 €7 La)
to denote that the Parikh image of L; is equal to (resp.
included in) the Parikh image of Ly. Also, given w, w’ € T*,
we abbreviate {w} = {w'} to w =7 w'.

We fix a context-free grammar G = (V, T, P, S) with n
variables and degree m. In terms of the notation we have
just introduced, we have to prove L(G) = L(M’ém“). One
inclusion is easy:

Proposition 2.1. For every k > 1 we have L(MX) Cr7 L(G).

Proof. Let k > 1 arbitrary, and let go 2> q be a run of
M’(‘; on the word o € T*. We first claim that there ex-
ists a step sequence S =* « satisfying ITy(x¢) =q and
It (o) = I (o). The proof is by induction on the length
£ of gg <> q. If £=0, then 0 =¢, and we choose a =
S, which satisfies ITy(S) = qo and I17(S) = (0,...,0) =
Ir(e). If £ >0, then let 0 =o'y and qo o, q x, q.
By induction hypothesis there is a step sequence S =* o’
satisfying ITy (@’) = q' and IIr(«’) = II1(c’). Moreover,
since ¢’ RAN g is a transition of MK, there is a pro-
duction A — y’ and a step a1Aqy = a1yay such that
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