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1. Introduction

The VC-dimension is a fundamental parameter of a
range space that, intuitively speaking, measures how dif-
ferently the ranges intersect with subsets of the ground
set. Besides its importance in machine learning, VC-dimen-
sion became significant to computational geometry, chiefly
through its role in the Epsilon Net Theorem by Haussler
and Welzl [4]. This theorem states that whenever a range
space has got finite VC-dimension d then there exists an
e-net for this space of size Cd1log for some small con-
stant C.

For many important geometric range spaces such as
rectangles, circles or halfspaces, the VC-dimension is not
hard to estimate. The VC-dimension of range spaces of
visibility domains was first considered by Kalai and Ma-
touSek [6]. As an application, the Epsilon Net Theorem
gives an upper bound of O(rlogr) on the number of
guards needed to guard a polygonal art gallery where ev-
ery point sees at least an r-th part of the entire polygon.
The VC-dimension of the set of visibility polygons inside
polygons contributes a constant factor to this upper bound.
Therefore, better upper bounds on the VC-dimension im-
mediately yield better upper bounds on the number of
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guards needed. Kalai and Matousek [G] showed that the
VC-dimension of visibility polygons in a simple polygon is
finite. They also gave an example of a gallery with VC-
dimension 5. Furthermore, they showed that there is no
constant that bounds the VC-dimension for polygons with
holes. For simple polygons, Valtr [11] gave an example of a
gallery with VC-dimension 6 and proved an upper bound
of 23. In the same paper he showed an upper bound for
the VC-dimension of a gallery with holes of O (logh) where
h is the number of holes, and art galleries with holes that
have VC-dimensions of this size can also be constructed.
These results for galleries with holes easily carry over to
the case of Perimeter Visibility Domains. In [3] Gilbers and
Klein show that the VC-dimension of Visibility Polygons of
a Simple Polygon is at most 14 (an extended abstract of
this paper appeared in [2]). Isler et al. [5] examined the
case of exterior visibility. In this setting the points of S lie
on the boundary of a polygon P and the ranges are sets
of the form vis(v) where v is a point outside the con-
vex hull of P. They showed that the VC-dimension is 5.
They also considered a more restricted version of exterior
visibility where the view points v all must lie on a circle
around P, with VC-dimension 2. For a 3-dimensional ver-
sion of exterior visibility with S on the boundary of a poly-
hedron Q they found that the VC-dimension is in O (logn)
where n is the number of vertices of Q. King [7] examined
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the VC-dimension of visibility regions on polygonal ter-
rains. For 1.5-dimensional terrains he proved that the VC-
dimension equals 4 and on 2.5-dimensional terrains there
is no constant bound. Kirkpatrick [9] showed that it is pos-
sible to guard a polygon with O (rloglogr) many perimeter
guards (i.e. guards on the boundary of the polygon) if ev-
ery point on the boundary sees at least an r-th part of the
boundary. In [8] King and Kirkpatrick extended this work
and obtained an O (loglog OPT)-approximation algorithm
for finding the minimum number of guards on the perime-
ter that guard the polygon. As an open question they asked
whether it is easier to find the VC-dimension in the case of
perimeter guards than for general visibility polygons. They
show that the corresponding VC-dimension is at least 5.
In this paper we show that in the case of simple polygons
one can obtain an upper bound of 7 for this VC-dimension,
by extending the technique from Gilbers and Klein [1].

2. VC-dimension

The following definition of VC-dimension is adopted
from [10].

Definition 1. Let F be a set system on a set X. A subset
S C X is said to be shattered by F if each of the subsets
of S can be obtained as the intersection of some F € F
with S. We define the VC-dimension of F, denoted by
dim(F), as the supremum of the sizes of all finite shat-
tered subsets of X. If arbitrarily large subsets can be shat-
tered, the VC-dimension is oo.

If a finite subset Y € X with |Y| =n is shattered by F,
then the set I[Tx(Y)={YNF | F € F} has 2" elements. For
every such Y we define the coarseness of Y to be cx(Y) =
2" — | x(Y)|. Obviously, Y is shattered by F iff cx(Y) =0.

Let now Y be shattered by F and F be the union of
F' and F'.If cx(Y) =k > 0 there are k subsets of Y that
are not shattered by F'. It is clear that for each of these
subsets Z there must be some set F” € 7" such that Z =
F” NY. Therefore ITx»(Y) > k. We have just proven the
following lemma.

Lemma 1. Let Y be shattered by F and F = F' U F". Then
Iy (Y)=cr(Y).

We next reformulate a property of shattered sets that
Gilbers and Klein already used in [1] and that will again
be a cornerstone of our proof:

Lemma 2. Let Y', Y” be disjoint subsets of the finite set Y and
F'UF'=F.Thencr(Y)>cr (Y -crr(Y").

Proof. Let Z/ CY’, Z” CY” such that forno F' € F': Z' =
Y'NF and for no F" € F”: Z” =Y” N F”. Then there can
be no F € F such that Z’ U Z” =Y N F. That means that
for every such combination of subsets of Y’, Y” there is a
distinct subset of Y that does not have a representation as
an intersection of Y with some F € F. There are cz (Y') -
cx»(Y") such combinations. The inequality follows. O

Corollary 1. Let Y’, Y” be disjoint subsets of the finite set Y
and F'U F" = F. If F shatters Y then F’ shatters Y’, or F"
shatters Y”.

Another property that we will make use of is the fol-
lowing.

Lemma 3. Let X be a set that is shattered by F, Y C X and
Fy ={F € F|Y C F}. Then X \'Y is shattered by Fy.

Proof. Suppose not. Then there is some X' C X \ Y such
that FN X\ Y = X’ for no F € Fy. But then there can be
no F e Fy with XN F =X UY. As there can also be no
such set in F \ Fy, X can not be shattered by 7. 0O

3. Perimeter Visibility Domains

Let P be a simple polygon with boundary B. As usual,
for a point p € P its Visibility Polygon vis(p) is the set of
points v such that the whole segment pv is contained
in P. We restrict our attention to the portions of visibil-
ity polygons on the boundary, vis(p) N B. For every p € B
we will call this boundary portion its Perimeter Visibility
Domain and denote it by V(p). As we are only concerned
with this kind of visibility domains in this paper, we will
refer to them simply as Visibility Domains, below. We are
now interested in the VC-dimension of the set system
V ={V(b)}pep on the set B.

Definition 2. A subset [ of B is called an interval in B
if there is a continuous injective function m:[0,1] — B
with image [ or if I =0.

Definition 3. Let B; be a subset of B. We call a subset B
of B interval-like relative to B, if its intersection with Bj
equals the intersection of B1 with some interval in B.

For an illustration of this concept, see Fig. 1. The key
geometric insight that we will need is formulated in the
following lemma:

Lemma 4. Let a1, ay € B be two distinct boundary points such
that B\ {ay, ay} splits into two connected components C and D.
Then for every point ¢ € C, V (c) is interval-like relative to D N
V(a1) NV (az).

Proof. We have to find an interval I in B such that INDN
V(a;) NV (az) equals V(c)NnDNV(ay) NV(ay).

Let to this end 7:[0,1] — DUf{ay, az} be a continuous
bijective map with 7 (0) =a; and 7 (1) = a,.

If the intersection D N V(c) of D with the visibility do-
main of ¢ is empty, we set [ = .

Otherwise there are values f = inf{x € (0,1) : w(x) €
V(c)} and € =sup{x € (0,1) : w(x) € V(c)}. We set I as the
image of [f, ¢] under r, I =m[[f, £]], see Fig. 2.

It remains to show that the two intersections I N D N
V() NV(ay) and V(c)N DN V(ay) NV(ay) are indeed
equal.

By the definition of I it is clear that V(c)Nn DNV (ay)N
V@) SINnDNV(@)NV(ay),as Vic)NnDCIND.
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