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1. Introduction

The VC-dimension is a fundamental parameter of a 
range space that, intuitively speaking, measures how dif-
ferently the ranges intersect with subsets of the ground 
set. Besides its importance in machine learning, VC-dimen-
sion became significant to computational geometry, chiefly 
through its role in the Epsilon Net Theorem by Haussler 
and Welzl [4]. This theorem states that whenever a range 
space has got finite VC-dimension d then there exists an 
ε-net for this space of size Cd 1

ε log 1
ε for some small con-

stant C .
For many important geometric range spaces such as 

rectangles, circles or halfspaces, the VC-dimension is not 
hard to estimate. The VC-dimension of range spaces of 
visibility domains was first considered by Kalai and Ma-
toušek [6]. As an application, the Epsilon Net Theorem 
gives an upper bound of O (r log r) on the number of 
guards needed to guard a polygonal art gallery where ev-
ery point sees at least an r-th part of the entire polygon. 
The VC-dimension of the set of visibility polygons inside 
polygons contributes a constant factor to this upper bound. 
Therefore, better upper bounds on the VC-dimension im-
mediately yield better upper bounds on the number of 

E-mail address: alexander@uni-bonn.de.

guards needed. Kalai and Matoušek [6] showed that the 
VC-dimension of visibility polygons in a simple polygon is 
finite. They also gave an example of a gallery with VC-
dimension 5. Furthermore, they showed that there is no 
constant that bounds the VC-dimension for polygons with 
holes. For simple polygons, Valtr [11] gave an example of a 
gallery with VC-dimension 6 and proved an upper bound 
of 23. In the same paper he showed an upper bound for 
the VC-dimension of a gallery with holes of O (log h) where 
h is the number of holes, and art galleries with holes that 
have VC-dimensions of this size can also be constructed. 
These results for galleries with holes easily carry over to 
the case of Perimeter Visibility Domains. In [3] Gilbers and 
Klein show that the VC-dimension of Visibility Polygons of 
a Simple Polygon is at most 14 (an extended abstract of 
this paper appeared in [2]). Isler et al. [5] examined the 
case of exterior visibility. In this setting the points of S lie 
on the boundary of a polygon P and the ranges are sets 
of the form vis(v) where v is a point outside the con-
vex hull of P . They showed that the VC-dimension is 5. 
They also considered a more restricted version of exterior 
visibility where the view points v all must lie on a circle 
around P , with VC-dimension 2. For a 3-dimensional ver-
sion of exterior visibility with S on the boundary of a poly-
hedron Q they found that the VC-dimension is in O (log n)

where n is the number of vertices of Q . King [7] examined 
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the VC-dimension of visibility regions on polygonal ter-
rains. For 1.5-dimensional terrains he proved that the VC-
dimension equals 4 and on 2.5-dimensional terrains there 
is no constant bound. Kirkpatrick [9] showed that it is pos-
sible to guard a polygon with O (r log log r) many perimeter 
guards (i.e. guards on the boundary of the polygon) if ev-
ery point on the boundary sees at least an r-th part of the 
boundary. In [8] King and Kirkpatrick extended this work 
and obtained an O (log log OPT)-approximation algorithm 
for finding the minimum number of guards on the perime-
ter that guard the polygon. As an open question they asked 
whether it is easier to find the VC-dimension in the case of 
perimeter guards than for general visibility polygons. They 
show that the corresponding VC-dimension is at least 5. 
In this paper we show that in the case of simple polygons 
one can obtain an upper bound of 7 for this VC-dimension, 
by extending the technique from Gilbers and Klein [1].

2. VC-dimension

The following definition of VC-dimension is adopted 
from [10].

Definition 1. Let F be a set system on a set X . A subset 
S ⊆ X is said to be shattered by F if each of the subsets 
of S can be obtained as the intersection of some F ∈ F
with S . We define the VC-dimension of F , denoted by 
dim(F), as the supremum of the sizes of all finite shat-
tered subsets of X. If arbitrarily large subsets can be shat-
tered, the VC-dimension is ∞.

If a finite subset Y ⊆ X with |Y | = n is shattered by F , 
then the set ΠF (Y ) = {Y ∩ F | F ∈F} has 2n elements. For 
every such Y we define the coarseness of Y to be cF (Y ) =
2n −|ΠF (Y )|. Obviously, Y is shattered by F iff cF (Y ) = 0.

Let now Y be shattered by F and F be the union of 
F ′ and F ′′ . If cF ′ (Y ) = k > 0 there are k subsets of Y that 
are not shattered by F ′ . It is clear that for each of these 
subsets Z there must be some set F ′′ ∈ F ′′ such that Z =
F ′′ ∩ Y . Therefore ΠF ′′(Y ) ≥ k. We have just proven the 
following lemma.

Lemma 1. Let Y be shattered by F and F = F ′ ∪ F ′′ . Then 
ΠF ′′(Y ) ≥ cF ′ (Y ).

We next reformulate a property of shattered sets that 
Gilbers and Klein already used in [1] and that will again 
be a cornerstone of our proof:

Lemma 2. Let Y ′ , Y ′′ be disjoint subsets of the finite set Y and 
F ′ ∪F ′′ =F . Then cF (Y ) ≥ cF ′ (Y ′) · cF ′′(Y ′′).

Proof. Let Z ′ ⊆ Y ′ , Z ′′ ⊆ Y ′′ such that for no F ′ ∈F ′: Z ′ =
Y ′ ∩ F ′ and for no F ′′ ∈ F ′′: Z ′′ = Y ′′ ∩ F ′′ . Then there can 
be no F ∈ F such that Z ′ ∪ Z ′′ = Y ∩ F . That means that 
for every such combination of subsets of Y ′ , Y ′′ there is a 
distinct subset of Y that does not have a representation as 
an intersection of Y with some F ∈ F . There are cF ′ (Y ′) ·
cF ′′(Y ′′) such combinations. The inequality follows. �

Corollary 1. Let Y ′ , Y ′′ be disjoint subsets of the finite set Y
and F ′ ∪ F ′′ = F . If F shatters Y then F ′ shatters Y ′ , or F ′′
shatters Y ′′ .

Another property that we will make use of is the fol-
lowing.

Lemma 3. Let X be a set that is shattered by F , Y � X and 
FY = {F ∈F | Y ⊆ F }. Then X \ Y is shattered by FY .

Proof. Suppose not. Then there is some X ′ ⊆ X \ Y such 
that F ∩ X \ Y = X ′ for no F ∈ FY . But then there can be 
no F ∈ FY with X ∩ F = X ′ ∪ Y . As there can also be no 
such set in F \FY , X can not be shattered by F . �
3. Perimeter Visibility Domains

Let P be a simple polygon with boundary B . As usual, 
for a point p ∈ P its Visibility Polygon vis(p) is the set of 
points v such that the whole segment pv is contained 
in P . We restrict our attention to the portions of visibil-
ity polygons on the boundary, vis(p) ∩ B . For every p ∈ B
we will call this boundary portion its Perimeter Visibility 
Domain and denote it by V (p). As we are only concerned 
with this kind of visibility domains in this paper, we will 
refer to them simply as Visibility Domains, below. We are 
now interested in the VC-dimension of the set system 
V = {V (b)}b∈B on the set B .

Definition 2. A subset I of B is called an interval in B
if there is a continuous injective function π : [0, 1] −→ B
with image I or if I = ∅.

Definition 3. Let B1 be a subset of B . We call a subset B2
of B interval-like relative to B1, if its intersection with B1
equals the intersection of B1 with some interval in B .

For an illustration of this concept, see Fig. 1. The key 
geometric insight that we will need is formulated in the 
following lemma:

Lemma 4. Let a1, a2 ∈ B be two distinct boundary points such 
that B \ {a1, a2} splits into two connected components C and D. 
Then for every point c ∈ C , V (c) is interval-like relative to D ∩
V (a1) ∩ V (a2).

Proof. We have to find an interval I in B such that I ∩ D ∩
V (a1) ∩ V (a2) equals V (c) ∩ D ∩ V (a1) ∩ V (a2).

Let to this end π : [0, 1] −→ D ∪{a1, a2} be a continuous 
bijective map with π(0) = a1 and π(1) = a2.

If the intersection D ∩ V (c) of D with the visibility do-
main of c is empty, we set I = ∅.

Otherwise there are values f = inf{x ∈ (0, 1) : π(x) ∈
V (c)} and � = sup{x ∈ (0, 1) : π(x) ∈ V (c)}. We set I as the 
image of [ f , �] under π , I = π [[ f , �]], see Fig. 2.

It remains to show that the two intersections I ∩ D ∩
V (a1) ∩ V (a2) and V (c) ∩ D ∩ V (a1) ∩ V (a2) are indeed 
equal.

By the definition of I it is clear that V (c) ∩ D ∩ V (a1) ∩
V (a2) ⊆ I ∩ D ∩ V (a1) ∩ V (a2), as V (c) ∩ D ⊆ I ∩ D .
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