
Information Processing Letters 114 (2014) 706–709

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Fractional programming formulation for the vertex coloring 

problem

Tomomi Matsui, Noriyoshi Sukegawa ∗, Atsushi Miyauchi

Graduate School of Decision Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 February 2014
Received in revised form 1 May 2014
Accepted 24 June 2014
Available online 30 June 2014
Communicated by M. Yamashita

Keywords:
Combinatorial problems
Vertex coloring
Fractional programming formulation
Mixed integer linear programming problem

We devise a new formulation for the vertex coloring problem. Different from other 
formulations, decision variables are associated with pairs of vertices. Consequently, colors 
will be distinguishable. Although the objective function is fractional, it can be replaced by 
a piece-wise linear convex function. Numerical experiments show that our formulation has 
significantly good performance for dense graphs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The vertex coloring problem (VCP) is a well-known 
NP-hard [1] combinatorial optimization problem with a 
large number of applications including scheduling, regis-
ter allocation, and timetabling (see the survey [2] for the 
details). In this problem, we are given a simple and undi-
rected graph G = (V , E). The objective is to find an assign-
ment of colors to V such that no two adjacent vertices 
share the same color and the number of colors used is 
minimized.

In the standard formulation for VCP, letting C be a set 
of colors, we introduce a decision variable xvc (∀v ∈ V , 
∀c ∈ C ) which takes 1 if v receives color c and takes 0 
otherwise. Since every graph can be colored with n = |V |
colors, it suffices to set C = {1, 2, . . . , n}. Although this 
formulation is intuitive and simple, there exists a strong 
symmetry in the feasible region resulting from the indis-
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tinguishability of colors. Suppose that we have a solution 
using k colors. Then we see that this model has 

(|C |
k

)
k!

equivalent solutions. This property will be a great disad-
vantage when we use mixed integer linear programming 
(MILP) solvers. For this reason, cuts that remove the sym-
metry have been studied [3,4]. On the other hand, re-
cently, alternative formulations for VCP have received a 
considerable attention. For instance, there are studies on a 
set partitioning formulation [5], an asymmetric represen-
tative formulation [6,7], an unconstrained quadratic binary 
programming formulation [8], and a supernodal formula-
tion [9]. For further discussion on these formulations, see 
Burke et al. [9].

In this study, we focus on pairs of vertices which can be 
colored by the same color, and associate decision variables 
with these pairs. As a result, we obtain a new formula-
tion for VCP. Our model does not suffer from the symmetry 
which is discussed above and has a linear fractional objec-
tive function. This objective function can be equivalently 
replaced by a piece-wise linear convex function, which 
gives us an MILP model for VCP. By this transformation, 
we can feed our model to commercial MILP solvers such as 
Gurobi Optimizer. To verify the validity of our formulation, 
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we conducted numerical experiments on random graphs 
and several instances form DIMACS Implementation Chal-
lenge, and confirmed that it has a significantly good per-
formance for dense graphs. It should be noted that high 
edge density does not necessarily make instances easy. In 
fact, there is a dense but hard instance DSJC125.9 with 
only 125 vertices from DIMACS Implementation Challenge. 
The optimal value of this instance was an open problem 
until very recently. See Gualandi and Malucelli [10] for the 
details. We confirmed that our model solves this instance 
less than only 1 minute.

2. Our formulation

2.1. Expression as a fractional programming problem

In our formulation, for each distinct pair of vertices u
and v , we introduce a decision variable xuv which takes 
1 if u and v share the same color and takes 0 otherwise. 
Clearly, we have xuv = 0 for each {u, v} ∈ E . Here, we use 
the following inequality constraints

xuv + xv w − xuw ≤ 1

(∀u, v, w ∈ V with u �= v, v �= w, u �= w)

to obtain an explicit description of the feasible region. 
These inequalities say that if u and v share the same color 
(xuv = 1) and v and w also share the same color (xv w = 1), 
then u and v must receive the same color (xuw = 1). 
These inequalities are referred to as the triangle inequal-
ities studied in Grötschel and Wakabayashi [11] as facet-
defining inequalities for a clique partitioning polytope. This 
relationship is natural because if x is a feasible solution 
for VCP, then a corresponding set Ex = {{u, v} | xuv = 1}
of edges induces a clique partitioning of the complement 
graph G of G , and vice versa.

Next, let us consider how to calculate the number of 
colors used in x, namely the objective value. To this aim, 
we focus on the number of connected components in 
(V , Ex), which equals the desired value. For a feasible so-
lution x, let us define

f v(x) = 1

1 + ∑
u∈V xuv

for each v ∈ V . Suppose that a vertex v belongs to a con-
nected component (V ′, E ′) with |V ′| = k in (V , Ex). Then 
we have f v(x) = 1/k since V ′ is a clique of (V , Ex). Thus, 
the sum of f v(x) over v ∈ V ′ equals 1 for each connected 
component (V ′, E ′), which implies that the sum of f v(x)

over v ∈ V gives the number of connected components in 
(V , Ex). Therefore, we obtain the following proposition.

Proposition 1. For a given feasible solution x,

∑
v∈V

f v(x)

equals the number of connected components in (V , Ex), which 
is the number of colors used in x.

In sum, our formulation is described as follows:

minimize
∑
v∈V

f v(x)

subject to xuv = 0 (∀{u, v} ∈ E),

xuv + xv w − xuw ≤ 1
(∀u, v, w ∈ V with u �= v, v �= w, u �= w),

xuv ∈ {0,1}
(∀u, v ∈ V with u �= v).

It should be noted that there are redundant variables and 
constraints. Suppose that {u, v} ∈ E . Then, of course, we do 
not need to consider the decision variable xuv . In addition, 
the transitivity constraints xuv + xv w − xuw ≤ 1 is redun-
dant for every w ∈ V \ {u, v} because it is equivalent to 
xv w − xuw ≤ 1, which is satisfied by any pair of xv w and 
xuw with 0 ≤ xv w , xuw ≤ 1. In our numerical experiments, 
such redundant variables and constraints are removed.

2.2. Expression as a mixed integer linear programming problem

To implement our formulation on MILP solvers, we pro-
pose to replace the fractional objective function by a piece-
wise linear convex function. For each v ∈ V , we introduce 
a continuous decision variable f v which equals f v(x) for 
a given feasible solution x. Namely, the objective function 
will be the sum of f v over v ∈ V . For each v ∈ V and for 
each i ∈ {0, 1, . . . , n − 1}, we add the following linear in-
equality constraint

f v ≥ ui

(∑
u∈V

xuv

)
, (1)

where ui :R →R is a linear function defined by

Table 1
Results of our formulation (ours for short) and the standard formulation 
(standard for short) for the randomly generated graphs.

Instance Ours Standard

n p Time [s] Gap [%] Time [s] Gap [%]

30 0.3 3.44 — 15.72 —
0.5 4.48 — 122.91 —
0.7 0.17 — 92.13 —
0.9 0.04 — 34.34 —

50 0.3 ***** 16.43 2018.34 —
0.5 ** 10.56 *** 11.11
0.7 11.71 — ***** 19.72
0.9 0.14 — * 4.00

70 0.3 ***** 33.00 **** 12.50
0.5 ***** 17.00 ***** 30.73
0.7 517.87 — ***** 27.46
0.9 0.40 — ***** 12.41

Table 2
Results for the randomly generated graphs.

Instance Ours

n p Time [s] Gap [%]

100 0.9 1.50 —
150 0.9 61.59 —
200 0.9 * 1.59
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