
Information Processing Letters 114 (2014) 710–713

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Faster output-sensitive skyline computation algorithm

Jinfei Liu ∗, Li Xiong, Xiaofeng Xu

Department of Mathematics and Computer Science, Emory University, GA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 May 2014
Received in revised form 27 June 2014
Accepted 28 June 2014
Available online 2 July 2014
Communicated by Jinhui Xu

Keywords:
Skyline
Output-sensitive
Time complexity
Worst case
Computational complexity

We present the second output-sensitive skyline computation algorithm which is faster than 
the only existing output-sensitive skyline computation algorithm [1] in worst case because 
our algorithm does not rely on the existence of a linear time procedure for finding medians.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Skyline, which was also known as Maxima in com-
putational geometry or Pareto in business management 
field, is important for many applications involving multi-
criteria decision making. The skyline of a set of multi-
dimensional objects consists of the objects for which no 
other object exists that is at least as good along every di-
mension.

Assume that we have a set of n objects. Each ob-
ject of d real-valued attributes can be conceptualized as a 
d-dimensional point (p[1], p[2], ..., p[d]) ∈ R

d where p[i]
is the i-th attribute of p. We use P to refer to the set 
of all these points. Fig. 1(a) illustrates a set of eight ob-
jects P = {p1, p2, ..., p8}, each representing the descrip-
tion of a hotel with two attributes: distance to the beach 
and price. Fig. 1(b) shows the corresponding points in the 
2-dimensional space where x and y axes correspond to the 
value of attributes for distance to the beach and price, re-
spectively. Given two points p = (p[1], p[2], ..., p[d]) and 
p′ = (p′[1], p′[2], ..., p′[d]) in Rd , p dominates p′ iff for 
every i, p[i] ≤ p′[i] and for at least one i, p[i] < p′[i]
(1 ≤ i ≤ d). To illustrate, in Fig. 1(b), point p3(2, 150) dom-

* Corresponding author.

inates point p2(3.5, 175) because 2 < 3.5 and 150 < 175. 
Given a set of points P , the skyline of P is the set of points 
in P that are not dominated by any other point in P . The 
skyline of Fig. 1(b) includes p1, p5, and p8, which offer 
various tradeoffs between distance and price: p1 is the 
nearest to the beach, p8 is the cheapest, and p5 may be 
a good compromise of the two factors. The skyline com-
putation problem is to find the skyline set of the given 
database P considering attributes of the objects in P as 
dimensions of the space. Note that not every skyline point 
needs to dominate a point of P . For example, in Fig. 1(b), 
while points p5 and p8 dominate points {p2, p3, p4} and 
{p2, p4, p6, p7}, respectively, point p1 dominates no point.

Definition 1 (Skyline). Given a dataset P of n points in 
d-dimensional space. Let p and p′ be two different points 
in P , we say p dominates p′ iff for all i, p[i] ≤ p′[i] and for 
at least one i, p[i] < p′[i], where p[i] is the i-th dimension 
of p and 1 ≤ i ≤ d. The skyline points are those points in 
P that are not dominated by any other point in P .

Previous results. The skyline computation problem has 
been extensively studied in the computational geometry 
field. The best of existing worst-case algorithms [2–5] are 
based on divide-and-conquer paradigm which achieves 
O (n log n) time complexity in two dimensional space, 

http://dx.doi.org/10.1016/j.ipl.2014.06.014
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.06.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://dx.doi.org/10.1016/j.ipl.2014.06.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.06.014&domain=pdf


J. Liu et al. / Information Processing Letters 114 (2014) 710–713 711

Fig. 1. A skyline example of hotels.

where n is the number of points. The only existing output-
sensitive skyline computation algorithm was presented 
in [1] by Kirkpatrick and Seidel. Ref. [1] illustrated an al-
gorithm that achieves O (n log k) time complexity where 
k is the number of skyline points. Recently, Hu et al. 
[6] extended the output-sensitive algorithm to external 
memory. Unfortunately, both algorithms rely on the ex-
istence of a linear time median algorithm [7] in the 
first step which lead to more than 5.4305̇n log k compar-
isons. Recently, Chan and Lee [8] presented two output-
sensitive algorithms that achieve expected comparisons of 
n log k + O (n

√
log k).

2. Output-sensitive skyline computation algorithm

2.1. An output-sensitive algorithm in two dimensions

Let P ⊂ R
2 be a set of n points and K be the number 

of skyline points we expect. Since the number of skyline 
points k is not known in advance, we will show later how 
to use a sequence of K values to find all k skyline points, 
that is, increase K until K ≥ k. The algorithm given K is 
shown in Algorithm 1. The overall algorithm to find all k
skyline points is shown in Algorithm 2.

In Algorithm 1, Step 1 partitions the n points into 
�n/K	 subsets. Then Step 2 computes the skyline points 
of each subset in �n/K	 × O (K log K ) = O (n log K ) time. 
We then find a global skyline point by selecting a candi-
date skyline point in each subset (Step 3) and selecting 
the point with the global minimum value (Step 4). This 
point is used to eliminate all points dominated by this 
point in Step 5. Because of this elimination, we can guar-
antee that a skyline point is obtained in each subsequent 
iteration (Lemma 1). Step 3 to Step 5 are repeated for K
iterations or until there is no remaining point, in which 
case all k (k ≤ K ) skyline points will be returned. If k > K , 
Algorithm 1 outputs an empty set since there are still re-
maining points after K skyline points are found with K
iterations.

Example 1. Given 15 points in two-dimensional space, an 
example of Algorithm 1 is shown in Fig. 2. For simplicity, 
we assume k = 5 is known in advance. In (a), the 15 points 
are partitioned into 3 subsets (circle, box, and cross) of 5 
each. The skyline points of each subset is then computed, 
shown in (b). Then we choose the point with smallest first 

Algorithm 1 O (n log K ) SKYLINE(P , K ).
Input: a set of n points in two-dimensional space
Output: k skyline points or ∅

1: /*Step 1: partition*/
2: partition P into subsets P1, P2, ..., P�n/K	 randomly, each of size at 

most K .
3: /*Step 2: compute skyline points of each subset*/
4: for j = 1, 2, ..., �n/K	 do
5: compute the skyline points of P j using worst-case O (n logn) sky-

line algorithm [9].
6: end for
7: for i = 1, 2, ..., K do
8: /*Step 3: choose the candidate skyline points*/
9: for j = 1, 2, ..., �n/K	 do

10: choose point p j with smallest value on first dimension value as 
a candidate skyline point.

11: end for
12: /*Step 4: obtain one skyline point*/
13: compute the point pi with smallest first dimension value from p j , 

1 ≤ j ≤ �n/K	.
14: /*Step 5: eliminate non-skyline points*/
15: for j = 1, 2, ..., �n/K	 do
16: perform a binary search to delete those points whose second 

dimension value is equal to or greater than pi[2].
17: end for
18: if no point in P then
19: return SKYLINE = {p1, p2, ..., pi}.
20: end if
21: end for
22: return ∅.

Algorithm 2 O (n log k) 2-D SKYLINE(P ).
Input: a set of n points in two-dimensional space
Output: k skyline points

1: for t = 1, 2, ... do
2: TEMP = O (n log K ) SKYLINE(P , K ), where K = min{22t

, n}.
3: if TEMP �= ∅ then
4: return TEMP.
5: end if
6: end for

dimension value from each subset as the candidate skyline 
point, shown in (c). From these three candidate points, we 
choose the point with smallest first dimension value as the 
skyline point, highlighted in (d). Then all points that are 
dominated by this skyline point, i.e. the points whose sec-
ond dimension is equal to or greater than the determined 
skyline point, are eliminated, shown in (e). Then the next 
skyline point from the remaining points is selected in next 
iteration and used to eliminate the dominated pointed, 
shown in (f). The algorithm continues until all 5 skyline 
points are found.

Lemma 1. We can obtain one skyline points in each iteration of 
Step 4.

Proof. It is easy to see that we can obtain a skyline point 
from the first iteration because no point can dominate 
pi due to the smallest value in the first dimension. For 
the second iteration, because all the points dominated by 
pi are eliminated, the point with smallest first dimension 
value of remaining points in P should be a skyline point as 
no other point can dominate it. The analysis for all other 
skyline points follows similarly. �



Download English Version:

https://daneshyari.com/en/article/427329

Download Persian Version:

https://daneshyari.com/article/427329

Daneshyari.com

https://daneshyari.com/en/article/427329
https://daneshyari.com/article/427329
https://daneshyari.com

