Faster output-sensitive skyline computation algorithm

Jinfei Liu*, Li Xiong, Xiaofeng Xu
Department of Mathematics and Computer Science, Emory University, GA, USA

ARTICLE INFO

Article history:

Received 28 May 2014
Received in revised form 27 June 2014
Accepted 28 June 2014
Available online 2 July 2014
Communicated by Jinhui Xu

Keywords:

Skyline
Output-sensitive
Time complexity
Worst case
Computational complexity

Abstract

We present the second output-sensitive skyline computation algorithm which is faster than the only existing output-sensitive skyline computation algorithm [1] in worst case because our algorithm does not rely on the existence of a linear time procedure for finding medians. © 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Skyline, which was also known as Maxima in computational geometry or Pareto in business management field, is important for many applications involving multicriteria decision making. The skyline of a set of multidimensional objects consists of the objects for which no other object exists that is at least as good along every dimension.

Assume that we have a set of n objects. Each object of d real-valued attributes can be conceptualized as a d-dimensional point $(p[1], p[2], \ldots, p[d]) \in \mathbb{R}^{d}$ where $p[i]$ is the i-th attribute of p. We use P to refer to the set of all these points. Fig. 1(a) illustrates a set of eight objects $P=\left\{p_{1}, p_{2}, \ldots, p_{8}\right\}$, each representing the description of a hotel with two attributes: distance to the beach and price. Fig. 1(b) shows the corresponding points in the 2-dimensional space where x and y axes correspond to the value of attributes for distance to the beach and price, respectively. Given two points $p=(p[1], p[2], \ldots, p[d])$ and $p^{\prime}=\left(p^{\prime}[1], p^{\prime}[2], \ldots, p^{\prime}[d]\right)$ in \mathbb{R}^{d}, p dominates p^{\prime} iff for every $i, p[i] \leq p^{\prime}[i]$ and for at least one $i, p[i]<p^{\prime}[i]$ $(1 \leq i \leq d)$. To illustrate, in Fig. 1(b), point $p_{3}(2,150)$ dom-

[^0]inates point $p_{2}(3.5,175)$ because $2<3.5$ and $150<175$. Given a set of points P, the skyline of P is the set of points in P that are not dominated by any other point in P. The skyline of Fig. 1(b) includes p_{1}, p_{5}, and p_{8}, which offer various tradeoffs between distance and price: p_{1} is the nearest to the beach, p_{8} is the cheapest, and p_{5} may be a good compromise of the two factors. The skyline computation problem is to find the skyline set of the given database P considering attributes of the objects in P as dimensions of the space. Note that not every skyline point needs to dominate a point of P. For example, in Fig. 1(b), while points p_{5} and p_{8} dominate points $\left\{p_{2}, p_{3}, p_{4}\right\}$ and $\left\{p_{2}, p_{4}, p_{6}, p_{7}\right\}$, respectively, point p_{1} dominates no point.

Definition 1 (Skyline). Given a dataset P of n points in d-dimensional space. Let p and p^{\prime} be two different points in P, we say p dominates p^{\prime} iff for all $i, p[i] \leq p^{\prime}[i]$ and for at least one $i, p[i]<p^{\prime}[i]$, where $p[i]$ is the i-th dimension of p and $1 \leq i \leq d$. The skyline points are those points in P that are not dominated by any other point in P.

Previous results. The skyline computation problem has been extensively studied in the computational geometry field. The best of existing worst-case algorithms [2-5] are based on divide-and-conquer paradigm which achieves $O(n \log n)$ time complexity in two dimensional space,

hotel	distance	price
p_{1}	1	200
p_{2}	3.5	175
p_{3}	2	150
p_{4}	4	125
p_{5}	1.5	100
p_{6}	3	75
p_{7}	4	75
p_{8}	2.5	50

(a)

(b)

Fig. 1. A skyline example of hotels.
where n is the number of points. The only existing outputsensitive skyline computation algorithm was presented in [1] by Kirkpatrick and Seidel. Ref. [1] illustrated an algorithm that achieves $O(n \log k)$ time complexity where k is the number of skyline points. Recently, Hu et al. [6] extended the output-sensitive algorithm to external memory. Unfortunately, both algorithms rely on the existence of a linear time median algorithm [7] in the first step which lead to more than $5.4305 \dot{n} \log k$ comparisons. Recently, Chan and Lee [8] presented two outputsensitive algorithms that achieve expected comparisons of $n \log k+O(n \sqrt{\log k})$.

2. Output-sensitive skyline computation algorithm

2.1. An output-sensitive algorithm in two dimensions

Let $P \subset \mathbb{R}^{2}$ be a set of n points and K be the number of skyline points we expect. Since the number of skyline points k is not known in advance, we will show later how to use a sequence of K values to find all k skyline points, that is, increase K until $K \geq k$. The algorithm given K is shown in Algorithm 1. The overall algorithm to find all k skyline points is shown in Algorithm 2.

In Algorithm 1, Step 1 partitions the n points into $\lceil n / K\rceil$ subsets. Then Step 2 computes the skyline points of each subset in $\lceil n / K\rceil \times O(K \log K)=O(n \log K)$ time. We then find a global skyline point by selecting a candidate skyline point in each subset (Step 3) and selecting the point with the global minimum value (Step 4). This point is used to eliminate all points dominated by this point in Step 5. Because of this elimination, we can guarantee that a skyline point is obtained in each subsequent iteration (Lemma 1). Step 3 to Step 5 are repeated for K iterations or until there is no remaining point, in which case all $k(k \leq K)$ skyline points will be returned. If $k>K$, Algorithm 1 outputs an empty set since there are still remaining points after K skyline points are found with K iterations.

Example 1. Given 15 points in two-dimensional space, an example of Algorithm 1 is shown in Fig. 2. For simplicity, we assume $k=5$ is known in advance. In (a), the 15 points are partitioned into 3 subsets (circle, box, and cross) of 5 each. The skyline points of each subset is then computed, shown in (b). Then we choose the point with smallest first

```
Algorithm \(10(n \log K) \operatorname{SKYLINE}(P, K)\).
Input: a set of \(n\) points in two-dimensional space
Output: \(k\) skyline points or \(\emptyset\)
    /*Step 1: partition*/
    partition \(P\) into subsets \(P_{1}, P_{2}, \ldots, P_{\lceil n / K\rceil}\) randomly, each of size at
    most \(K\).
    /*Step 2: compute skyline points of each subset*/
    for \(j=1,2, \ldots,\lceil n / K\rceil\) do
        compute the skyline points of \(P_{j}\) using worst-case \(O(n \log n)\) sky-
        line algorithm [9].
    end for
    for \(i=1,2, \ldots, K\) do
        /*Step 3: choose the candidate skyline points*/
        for \(j=1,2, \ldots,\lceil n / K\rceil\) do
            choose point \(p_{j}\) with smallest value on first dimension value as
            a candidate skyline point.
        end for
        /*Step 4: obtain one skyline point*/
        compute the point \(p_{i}\) with smallest first dimension value from \(p_{j}\),
        \(1 \leq j \leq\lceil n / K\rceil\).
        /*Step 5: eliminate non-skyline points*/
        for \(j=1,2, \ldots,\lceil n / K\rceil\) do
            perform a binary search to delete those points whose second
            dimension value is equal to or greater than \(p_{i}[2]\).
        end for
        if no point in \(P\) then
            return SKYLINE \(=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}\).
        end if
    end for
    return \(\emptyset\).
```

```
Algorithm \(20(n \log k)\) 2-D SKYLINE ( \(P\) ).
Input: a set of \(n\) points in two-dimensional space
Output: \(k\) skyline points
    for \(t=1,2, \ldots\) do
        \(\operatorname{TEMP}=O(n \log K) \operatorname{SKYLINE}(P, K)\), where \(K=\min \left\{2^{2^{t}}, n\right\}\).
        if TEMP \(\neq \emptyset\) then
        return TEMP.
        end if
    end for
```

dimension value from each subset as the candidate skyline point, shown in (c). From these three candidate points, we choose the point with smallest first dimension value as the skyline point, highlighted in (d). Then all points that are dominated by this skyline point, i.e. the points whose second dimension is equal to or greater than the determined skyline point, are eliminated, shown in (e). Then the next skyline point from the remaining points is selected in next iteration and used to eliminate the dominated pointed, shown in (f). The algorithm continues until all 5 skyline points are found.

Lemma 1. We can obtain one skyline points in each iteration of Step 4.

Proof. It is easy to see that we can obtain a skyline point from the first iteration because no point can dominate p_{i} due to the smallest value in the first dimension. For the second iteration, because all the points dominated by p_{i} are eliminated, the point with smallest first dimension value of remaining points in P should be a skyline point as no other point can dominate it. The analysis for all other skyline points follows similarly.

https://daneshyari.com/en/article/427329

Download Persian Version:

https://daneshyari.com/article/427329

Daneshyari.com

[^0]: * Corresponding author.

