Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On a connection between small set expansions and modularity clustering

Bhaskar DasGupta^{a,*,1}, Devendra Desai^b

^a Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, United States ^b Department of Computer Science, Rutgers University, Piscataway, NJ 08854, United States

ABSTRACT

ARTICLE INFO

Article history: Received 30 May 2013 Received in revised form 22 October 2013 Accepted 11 February 2014 Available online 18 February 2014 Communicated by Tsan-sheng Hsu

Keywords: Theory of computation Small-set expansion Modularity clustering Social network

1. Introduction and definitions

All graphs considered in this note are undirected and *unweighted.*² Let G = (V, E) denote the given input graph with n = |V| nodes and m = |E| edges, let d_v denote the degree of a node $v \in V$, and let $A(G) = [a_{u,v}(G)]$ denote the adjacency matrix of G, i.e.,

 $a_{u,v}(G) = \begin{cases} 1, & \text{if } \{u, v\} \in E\\ 0, & \text{otherwise.} \end{cases}$

Since our result spans over two distinct research areas, we summarize the relevant definitions from both research fields [1,6] below for convenience.

E-mail addresses: dasgupta@cs.uic.edu (B. DasGupta), devdesai@cs.rutgers.edu (D. Desai).

URLs: http://www.cs.uic.edu/~dasgupta (B. DasGupta), http://paul.rutgers.edu/~devdesai (D. Desai).

¹ Partially supported by NSF grant IIS-1160995.

² Our result can be extended for the more general case of directed weighted graphs by using the correspondence of these versions with unweighted undirected graphs as outlined in [4, Section 5.1].

http://dx.doi.org/10.1016/j.ipl.2014.02.004

0020-0190/© 2014 Elsevier B.V. All rights reserved.

- (a) By a "set of (k) communities" we mean a partition of the set of nodes V into (k) non-empty parts.
- (b) If G is d-regular for some given d, then its symmetric stochastic walk matrix is denoted by $\widehat{A}(G)$, and is defined as the $n \times n$ real symmetric matrix $\widehat{A}(G) =$ $\left[\frac{a_{u,v}(G)}{d}\right].$
- (c) For a real number $\tau \in [0, 1)$, the τ -threshold rank of G, denoted by rank_{τ}(G), is the number of eigenvalues λ of $\widehat{A}(G)$ satisfying $|\lambda| > \tau$.
- (d) For a subset $\emptyset \subset S \subset V$ of nodes, the following quantities are defined:
 - The (normalized) measure of S is $\mu(S) = \frac{|S|}{n}$.
 - The (normalized) expansion of S is

$$\Phi(S) = \frac{|\{\{u, v\} \mid u \in S, v \notin S, \{u, v\} \in E\}|}{\sum_{v \in S} d_v}$$

- The (normalized) *density* of *S* is $D(S) = 1 \Phi(S)$.
- The modularity value of S is

In this paper we explore a connection between two seemingly different problems from two

different domains: the *small-set expansion* problem studied in unique games conjecture,

and a popular community finding approach for social networks known as the modularity

clustering approach. We show that a sub-exponential time algorithm for the small-set

expansion problem leads to a sub-exponential time constant factor approximation for some

$$\mathsf{M}(S) = \frac{1}{2m} \left(\sum_{u, v \in S} \left(a_{u, v} - \frac{d_u d_v}{2m} \right) \right)$$

(e) The modularity of a set of communities **S** is M(S) = $\sum_{S \in \mathbf{S}} \mathsf{M}(S).$

© 2014 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

- (f) The goal of the modularity k-clustering problem on an input graph G is to find a set of at most k communities **S** that maximizes M(S). Let $OPT_k(G) =$ max_s is a set of at most k communities {M(S)} denote the optimal modularity value for a modularity k-clustering; it is easy to verify that $0 \leq OPT_k(G) < 1$.
- (g) The goal of the *modularity clustering* problem on *G* is to find a set of (unspecified number of) communities **S** that *maximizes* M(S). Let OPT(G) denote the optimal modularity value for a modularity clustering; obviously, $OPT(G) = OPT_n(G)$.
- (h) $\exp(\xi)$ denotes $2^{c\xi}$ for some constant c > 0 that is independent of ξ .

The modularity clustering problems as described above is *extremely popular* in practice in their applications to biological networks [8,9] as well as to social networks [5–7]. For relevant computational complexity results for modularity maximization, see [2,4]. The following results from [4] demonstrate the computational hardness of $OPT_2(G)$ and OPT(G) even if *G* is a regular graph.

Theorem 1.1. (See [4].)

- (a) For every constant $d \ge 9$, there exists a collection of *d*-regular graphs *G* of *n* nodes such that it is NP-hard to decide if $OPT_2(G) \ge \frac{1}{2} \frac{2c}{dn}$ or if $OPT_2(G) \le \frac{1}{2} \frac{2c+2}{dn}$ for some positive $c = O(\sqrt{n})$.
- (b) There exists a collection of (n 3)-regular graphs G of n nodes such that it is NP-hard to decide if $OPT(G) > \frac{0.9388}{n-4}$ or if $OPT(G) < \frac{0.9382}{n-4}$.

2. Our result

Theorem 2.1. Let *G* be a *d*-regular graph. Then, for some constant $0 < \varepsilon < \frac{1}{2}$, there is an algorithm A_{ε} with the following properties:

- *A_ε* runs in sub-exponential time, i.e., in time exp(δn) for some constant 0 < δ = δ(ε) < 1 that depends on ε only.
- *A*_ε correctly distinguishes instances G of modularity clustering with OPT(G) ≥ 1 − ε from instances G with OPT(G) ≤ ε.

(Note that we make no claim if $\varepsilon < OPT(G) < 1 - \varepsilon$.)

Remark 2.2 (Usability of the approximation algorithm in Theorem 2.1). We prove Theorem 2.1 for $\varepsilon = 10^{-6}$. It is natural to ask if there are in fact infinite families of *d*-regular graphs *G* that satisfy $OPT(G) \ge 1 - 10^{-6}$ or $OPT(G) \le 10^{-6}$. The answer is affirmative, and we provide below examples of infinite families of such graphs.

 $OPT(G) \ge 1 - 10^{-6}$: Consider, for example, the following explicit bound was demonstrated in [2, Corollary 6.4]:

if *G* is a union of *k* disjoint cliques each with $\frac{n}{k} > 3$ nodes then $OPT(G) = 1 - \frac{1}{k}$.

Based on this and other known results on modularity clustering, examples of families of regular graphs *G* for which $OPT(G) \ge 1 - 10^{-6}$ include:

- (1) *G* is a union of *k* disjoint cliques each with $\frac{n}{k} > 3$ nodes for any $k > 10^6$.
- (2) G is obtained by a local modification from the graph in (1) such as:
 - Start with a union of k disjoint cliques C_1, C_2, \ldots, C_k each with $\frac{n}{k} > 3$ nodes for any k sufficiently large with respect to 10^6 ($k \ge 10^7$ suffices).
 - Remove an arbitrary edge $\{u_i, v_i\}$ from each clique C_i . Let $U = \bigcup_{i=1}^k \{u_i\}$ and $V = \bigcup_{i=1}^k \{v_i\}$.
 - Add to *G* the edges corresponding to any perfect matching in the complete bipartite graph with node sets *U* and *V*.

 $OPT(G) \leq 10^{-6}$: Theorem 1.1 [4] involves infinitely many graphs of $n > 4 + 0.9388 \times 10^6$ nodes satisfying $OPT(G) < \frac{0.9388}{n-4} < 10^{-6}$ (these graphs are edge complements of appropriate families of 3-regular graphs used in [3]).

Proof of Theorem 2.1.³ Set $\varepsilon = 10^{-6}$. We assume that *G* is *d*-regular, and either $OPT(G) \ge 1 - 10^{-6}$ or $OPT(G) \le 10^{-6}$.

Preliminary algebraic simplification

Let $\mathbf{S} = \{S_1, S_2, ..., S_k\}$ be a set of communities of *G*. The objective function M(**S**) can be equivalently expressed as follows via simple algebraic manipulation [2,5–7]. Let m_i denote the number of edges whose both endpoints are in S_i , m_{ij} denote the number of edges one of whose endpoints is in S_i and the other in S_j and $D_i = \sum_{v \in S_i} d_v$ denote the sum of degrees of nodes in S_i . Then, M(**S**) = $\sum_{S_i \in \mathbf{S}} (\frac{m_i}{m} - (\frac{D_i}{2m})^2)$.

² S₁∈**S**($\frac{m}{m}$ - ($\frac{2m}{2m}$)). We will provide an approximation for OPT₂(*G*) and then use the result that OPT₂(*G*) ≥ $\frac{OPT(G)}{2}$ proved in [4]. Note that if OPT(*G*) ≤ 10⁻⁶ then obviously OPT₂(*G*) ≤ 10⁻⁶, whereas if OPT(*G*) ≥ 1 - 10⁻⁶ then OPT₂(*G*) ≥ $\frac{1}{2} - \frac{10^{-6}}{2}$. Consider a partition **S** of *V* into exactly two sets, say *S* and $\overline{S} = V \setminus S$ with 0 < $\mu(S) ≤ \frac{1}{2}$. By Lemma 2.2 of [4], M(*S*) = M(\overline{S}) and thus

$$M(\mathbf{S}) = 2 \times \left(\frac{m_1}{m} - \left(\frac{|S|}{n}\right)^2\right)$$
$$= 2 \times \left(\frac{\frac{1}{2}D(S)d|S|}{\frac{1}{2}dn} - \mu(S)^2\right)$$
$$= 2 \times \left(D(S)\mu(S) - \mu(S)^2\right)$$

Thus, letting D = D(S), $\mu = \mu(S)$ and $\Phi = \Phi(S)$, we have $\Phi = 1 - D$ as per our notations used in page 349 and the goal of modularity 2-clustering is to maximize the following function *f* over all possible valid choices of D and μ :

$$f(\mu, D) = 2 \times (\mu D - \mu^2) = 2 \times (\mu (1 - \Phi) - \mu^2)$$

³ We have made no significant attempts to optimize the constants in Theorem 2.1.

Download English Version:

https://daneshyari.com/en/article/427348

Download Persian Version:

https://daneshyari.com/article/427348

Daneshyari.com