On a connection between small set expansions and modularity clustering

Bhaskar DasGupta ${ }^{\text {a, }, 1}$, Devendra Desai ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, United States
${ }^{\text {b }}$ Department of Computer Science, Rutgers University, Piscataway, NJ 08854, United States

A R T I C L E IN F O

Article history:

Received 30 May 2013
Received in revised form 22 October 2013
Accepted 11 February 2014
Available online 18 February 2014
Communicated by Tsan-sheng Hsu

Keywords:

Theory of computation
Small-set expansion
Modularity clustering
Social network

Abstract

In this paper we explore a connection between two seemingly different problems from two different domains: the small-set expansion problem studied in unique games conjecture, and a popular community finding approach for social networks known as the modularity clustering approach. We show that a sub-exponential time algorithm for the small-set expansion problem leads to a sub-exponential time constant factor approximation for some hard input instances of the modularity clustering problem.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and definitions

All graphs considered in this note are undirected and unweighted. ${ }^{2}$ Let $G=(V, E)$ denote the given input graph with $n=|V|$ nodes and $m=|E|$ edges, let d_{v} denote the degree of a node $v \in V$, and let $A(G)=\left[a_{u, v}(G)\right]$ denote the adjacency matrix of G, i.e.,
$a_{u, v}(G)= \begin{cases}1, & \text { if }\{u, v\} \in E \\ 0, & \text { otherwise. }\end{cases}$
Since our result spans over two distinct research areas, we summarize the relevant definitions from both research fields [1,6] below for convenience.

[^0](a) By a "set of (k) communities" we mean a partition of the set of nodes V into (k) non-empty parts.
(b) If G is d-regular for some given d, then its symmetric stochastic walk matrix is denoted by $\widehat{A}(G)$, and is defined as the $n \times n$ real symmetric matrix $\widehat{A}(G)=$ $\left[\frac{a_{u, v}(G)}{d}\right]$.
(c) For a real number $\tau \in[0,1)$, the τ-threshold rank of G, denoted by $\operatorname{rank}_{\tau}(G)$, is the number of eigenvalues λ of $\widehat{A}(G)$ satisfying $|\lambda|>\tau$.
(d) For a subset $\emptyset \subset S \subset V$ of nodes, the following quantities are defined:

- The (normalized) measure of S is $\mu(S)=\frac{|S|}{n}$.
- The (normalized) expansion of S is

$$
\Phi(S)=\frac{|\{\{u, v\} \mid u \in S, v \notin S,\{u, v\} \in E\}|}{\sum_{v \in S} d_{v}}
$$

- The (normalized) density of S is $\mathrm{D}(S)=1-\Phi(S)$.
- The modularity value of S is
$\mathrm{M}(S)=\frac{1}{2 m}\left(\sum_{u, v \in S}\left(a_{u, v}-\frac{d_{u} d_{v}}{2 m}\right)\right)$
(e) The modularity of a set of communities \mathbf{S} is $\mathrm{M}(\mathbf{S})=$ $\sum_{S \in S} \mathrm{M}(S)$.
(f) The goal of the modularity k-clustering problem on an input graph G is to find a set of at most k communities \mathbf{S} that maximizes $\mathrm{M}(\mathbf{S})$. Let $\mathrm{OPT}_{k}(G)=$ $\max _{\mathbf{S}}$ is a set of at most k communities $\{\mathrm{M}(\mathbf{S})\}$ denote the optimal modularity value for a modularity k-clustering; it is easy to verify that $0 \leqslant \mathrm{OPT}_{k}(G)<1$.
(g) The goal of the modularity clustering problem on G is to find a set of (unspecified number of) communities \mathbf{S} that maximizes $\mathrm{M}(\mathbf{S})$. Let $\operatorname{OPT}(G)$ denote the optimal modularity value for a modularity clustering; obviously, $\mathrm{OPT}(G)=\mathrm{OPT}_{n}(G)$.
(h) $\exp (\xi)$ denotes $2^{c \xi}$ for some constant $c>0$ that is independent of ξ.

The modularity clustering problems as described above is extremely popular in practice in their applications to biological networks $[8,9]$ as well as to social networks [5-7]. For relevant computational complexity results for modularity maximization, see [2,4]. The following results from [4] demonstrate the computational hardness of $\mathrm{OPT}_{2}(G)$ and $\operatorname{OPT}(G)$ even if G is a regular graph.

Theorem 1.1. (See [4].)
(a) For every constant $d \geqslant 9$, there exists a collection of d-regular graphs G of n nodes such that it is NP-hard to decide if $\mathrm{OPT}_{2}(G) \geqslant \frac{1}{2}-\frac{2 c}{d n}$ or if $\mathrm{OPT}_{2}(G) \leqslant \frac{1}{2}-\frac{2 c+2}{d n}$ for some positive $c=O(\sqrt{n})$.
(b) There exists a collection of ($n-3$)-regular graphs G of n nodes such that it is NP-hard to decide if OPT $(G)>\frac{0.9388}{n-4}$ or if $\operatorname{OPT}(G)<\frac{0.9382}{n-4}$.

2. Our result

Theorem 2.1. Let G be a d-regular graph. Then, for some constant $0<\varepsilon<\frac{1}{2}$, there is an algorithm $\mathcal{A}_{\varepsilon}$ with the following properties:

- $\mathcal{A}_{\varepsilon}$ runs in sub-exponential time, i.e., in time $\exp (\delta n)$ for some constant $0<\delta=\delta(\varepsilon)<1$ that depends on ε only.
- $\mathcal{A}_{\varepsilon}$ correctly distinguishes instances G of modularity clustering with $\operatorname{OPT}(G) \geqslant 1-\varepsilon$ from instances G with $\mathrm{OPT}(G) \leqslant \varepsilon$.
(Note that we make no claim if $\varepsilon<\mathrm{OPT}(G)<1-\varepsilon$.)

Remark 2.2 (Usability of the approximation algorithm in Theorem 2.1). We prove Theorem 2.1 for $\varepsilon=10^{-6}$. It is natural to ask if there are in fact infinite families of d-regular graphs G that satisfy $\operatorname{OPT}(G) \geqslant 1-10^{-6}$ or $\operatorname{OPT}(G) \leqslant$ 10^{-6}. The answer is affirmative, and we provide below examples of infinite families of such graphs.
$\operatorname{OPT}(G) \geqslant 1-10^{-6}$: Consider, for example, the following explicit bound was demonstrated in [2, Corollary 6.4]:
if G is a union of k disjoint cliques each with $\frac{n}{k}>3$ nodes then $\operatorname{OPT}(G)=1-\frac{1}{k}$.

Based on this and other known results on modularity clustering, examples of families of regular graphs G for which $\operatorname{OPT}(G) \geqslant 1-10^{-6}$ include:
(1) G is a union of k disjoint cliques each with $\frac{n}{k}>3$ nodes for any $k>10^{6}$.
(2) G is obtained by a local modification from the graph in (1) such as:

- Start with a union of k disjoint cliques $\mathcal{C}_{1}, \mathcal{C}_{2}$, \ldots, \mathcal{C}_{k} each with $\frac{n}{k}>3$ nodes for any k sufficiently large with respect to $10^{6}\left(k \geqslant 10^{7}\right.$ suffices $)$.
- Remove an arbitrary edge $\left\{u_{i}, v_{i}\right\}$ from each clique \mathcal{C}_{i}. Let $U=\bigcup_{i=1}^{k}\left\{u_{i}\right\}$ and $V=\bigcup_{i=1}^{k}\left\{v_{i}\right\}$.
- Add to G the edges corresponding to any perfect matching in the complete bipartite graph with node sets U and V.
$\operatorname{OPT}(G) \leqslant 10^{-6}$: Theorem 1.1 [4] involves infinitely many graphs of $n>4+0.9388 \times 10^{6}$ nodes satisfying OPT $(G)<$ $\frac{0.9388}{n-4}<10^{-6}$ (these graphs are edge complements of appropriate families of 3-regular graphs used in [3]).

Proof of Theorem 2.1. ${ }^{3}$ Set $\varepsilon=10^{-6}$. We assume that G is d-regular, and either $\operatorname{OPT}(G) \geqslant 1-10^{-6}$ or $\operatorname{OPT}(G) \leqslant$ 10^{-6}.

Preliminary algebraic simplification

Let $\mathbf{S}=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ be a set of communities of G. The objective function $\mathrm{M}(\mathbf{S})$ can be equivalently expressed as follows via simple algebraic manipulation [2,5-7]. Let m_{i} denote the number of edges whose both endpoints are in $S_{i}, m_{i j}$ denote the number of edges one of whose endpoints is in S_{i} and the other in S_{j} and $D_{i}=\sum_{v \in S_{i}} d_{v}$ denote the sum of degrees of nodes in S_{i}. Then, $\mathrm{M}(\mathbf{S})=$ $\sum_{S_{i} \in \mathbf{S}}\left(\frac{m_{i}}{m}-\left(\frac{D_{i}}{2 m}\right)^{2}\right)$.

We will provide an approximation for $\mathrm{OPT}_{2}(G)$ and then use the result that $\mathrm{OPT}_{2}(G) \geqslant \frac{\mathrm{OPT}(G)}{2}$ proved in [4]. Note that if $\operatorname{OPT}(G) \leqslant 10^{-6}$ then obviously $\mathrm{OPT}_{2}(G) \leqslant$ 10^{-6}, whereas if $\operatorname{OPT}(G) \geqslant 1-10^{-6}$ then $\mathrm{OPT}_{2}(G) \geqslant$ $\frac{1}{2}-\frac{10^{-6}}{2}$. Consider a partition \mathbf{S} of V into exactly two sets, say S and $\bar{S}=V \backslash S$ with $0<\mu(S) \leqslant \frac{1}{2}$. By Lemma 2.2 of [4], $\mathrm{M}(S)=\mathrm{M}(\bar{S})$ and thus

$$
\begin{aligned}
\mathrm{M}(\mathbf{S}) & =2 \times\left(\frac{m_{1}}{m}-\left(\frac{|S|}{n}\right)^{2}\right) \\
& =2 \times\left(\frac{\frac{1}{2} \mathrm{D}(S) d|S|}{\frac{1}{2} d n}-\mu(S)^{2}\right) \\
& =2 \times\left(\mathrm{D}(S) \mu(S)-\mu(S)^{2}\right)
\end{aligned}
$$

Thus, letting $\mathrm{D}=\mathrm{D}(S), \mu=\mu(S)$ and $\Phi=\Phi(S)$, we have $\Phi=1-\mathrm{D}$ as per our notations used in page 349 and the goal of modularity 2 -clustering is to maximize the following function f over all possible valid choices of D and μ :
$f(\mu, \mathrm{D})=2 \times\left(\mu \mathrm{D}-\mu^{2}\right)=2 \times\left(\mu(1-\Phi)-\mu^{2}\right)$

[^1]
https://daneshyari.com/en/article/427348

Download Persian Version:
https://daneshyari.com/article/427348

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: dasgupta@cs.uic.edu (B. DasGupta), devdesai@cs.rutgers.edu (D. Desai).

 URLs: http://www.cs.uic.edu/~dasgupta (B. DasGupta), http://paul.rutgers.edu/~devdesai (D. Desai).
 ${ }^{1}$ Partially supported by NSF grant IIS-1160995.
 2 Our result can be extended for the more general case of directed weighted graphs by using the correspondence of these versions with unweighted undirected graphs as outlined in [4, Section 5.1].

[^1]: ${ }^{3}$ We have made no significant attempts to optimize the constants in Theorem 2.1.

