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In this paper we explore a connection between two seemingly different problems from two
different domains: the small-set expansion problem studied in unique games conjecture,
and a popular community finding approach for social networks known as the modularity
clustering approach. We show that a sub-exponential time algorithm for the small-set
expansion problem leads to a sub-exponential time constant factor approximation for some
hard input instances of the modularity clustering problem.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and definitions

All graphs considered in this note are undirected and
unweighted.2 Let G = (V , E) denote the given input graph
with n = |V | nodes and m = |E| edges, let dv denote the
degree of a node v ∈ V , and let A(G) = [au,v(G)] denote
the adjacency matrix of G , i.e.,

au,v(G) =
{

1, if {u, v} ∈ E
0, otherwise.

Since our result spans over two distinct research areas,
we summarize the relevant definitions from both research
fields [1,6] below for convenience.
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(a) By a “set of (k) communities” we mean a partition of
the set of nodes V into (k) non-empty parts.

(b) If G is d-regular for some given d, then its symmet-
ric stochastic walk matrix is denoted by Â(G), and is
defined as the n × n real symmetric matrix Â(G) =
[ au,v (G)

d ].
(c) For a real number τ ∈ [0,1), the τ -threshold rank of G ,

denoted by rankτ (G), is the number of eigenvalues λ

of Â(G) satisfying |λ| > τ .
(d) For a subset ∅ ⊂ S ⊂ V of nodes, the following quanti-

ties are defined:
• The (normalized) measure of S is μ(S) = |S|

n .
• The (normalized) expansion of S is

Φ(S) = |{{u, v} | u ∈ S, v /∈ S, {u, v} ∈ E}|∑
v∈S dv

• The (normalized) density of S is D(S) = 1 − Φ(S).
• The modularity value of S is

M(S) = 1

2m

( ∑
u,v∈S

(
au,v − dudv

2m

))
(e) The modularity of a set of communities S is M(S) =∑

S∈S M(S).
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(f) The goal of the modularity k-clustering problem on
an input graph G is to find a set of at most k
communities S that maximizes M(S). Let OPTk(G) =
maxS is a set of at most k communities{M(S)} denote the op-
timal modularity value for a modularity k-clustering;
it is easy to verify that 0 � OPTk(G) < 1.

(g) The goal of the modularity clustering problem on G
is to find a set of (unspecified number of) commu-
nities S that maximizes M(S). Let OPT(G) denote the
optimal modularity value for a modularity clustering;
obviously, OPT(G) = OPTn(G).

(h) exp(ξ) denotes 2cξ for some constant c > 0 that is in-
dependent of ξ .

The modularity clustering problems as described above
is extremely popular in practice in their applications to bi-
ological networks [8,9] as well as to social networks [5–7].
For relevant computational complexity results for modular-
ity maximization, see [2,4]. The following results from [4]
demonstrate the computational hardness of OPT2(G) and
OPT(G) even if G is a regular graph.

Theorem 1.1. (See [4].)

(a) For every constant d � 9, there exists a collection of
d-regular graphs G of n nodes such that it is NP-hard to
decide if OPT2(G) � 1

2 − 2c
dn or if OPT2(G) � 1

2 − 2c+2
dn for

some positive c = O (
√

n).
(b) There exists a collection of (n − 3)-regular graphs G of n

nodes such that it is NP-hard to decide if OPT(G) > 0.9388
n−4

or if OPT(G) < 0.9382
n−4 .

2. Our result

Theorem 2.1. Let G be a d-regular graph. Then, for some con-
stant 0 < ε < 1

2 , there is an algorithm Aε with the following
properties:

• Aε runs in sub-exponential time, i.e., in time exp(δn) for
some constant 0 < δ = δ(ε) < 1 that depends on ε only.

• Aε correctly distinguishes instances G of modularity clus-
tering with OPT(G) � 1 − ε from instances G with
OPT(G) � ε.

(Note that we make no claim if ε < OPT(G) < 1 − ε.)

Remark 2.2 (Usability of the approximation algorithm in The-
orem 2.1). We prove Theorem 2.1 for ε = 10−6. It is natural
to ask if there are in fact infinite families of d-regular
graphs G that satisfy OPT(G) � 1 − 10−6 or OPT(G) �
10−6. The answer is affirmative, and we provide below ex-
amples of infinite families of such graphs.

OPT(G) � 1 − 10−6: Consider, for example, the following
explicit bound was demonstrated in [2, Corollary 6.4]:

if G is a union of k disjoint cliques each with n
k > 3

nodes then OPT(G) = 1 − 1
k .

Based on this and other known results on modularity clus-
tering, examples of families of regular graphs G for which
OPT(G) � 1 − 10−6 include:

(1) G is a union of k disjoint cliques each with n
k > 3

nodes for any k > 106.
(2) G is obtained by a local modification from the graph

in (1) such as:
• Start with a union of k disjoint cliques C1,C2,

. . . ,Ck each with n
k > 3 nodes for any k sufficiently

large with respect to 106 (k � 107 suffices).
• Remove an arbitrary edge {ui, vi} from each clique
Ci . Let U = ⋃k

i=1{ui} and V = ⋃k
i=1{vi}.

• Add to G the edges corresponding to any perfect
matching in the complete bipartite graph with node
sets U and V .

OPT(G) � 10−6: Theorem 1.1 [4] involves infinitely many
graphs of n > 4 + 0.9388 × 106 nodes satisfying OPT(G) <
0.9388

n−4 < 10−6 (these graphs are edge complements of ap-
propriate families of 3-regular graphs used in [3]).

Proof of Theorem 2.1. 3 Set ε = 10−6. We assume that G
is d-regular, and either OPT(G) � 1 − 10−6 or OPT(G) �
10−6.

Preliminary algebraic simplification

Let S = {S1, S2, . . . , Sk} be a set of communities of G .
The objective function M(S) can be equivalently expressed
as follows via simple algebraic manipulation [2,5–7]. Let mi
denote the number of edges whose both endpoints are in
Si , mij denote the number of edges one of whose end-
points is in Si and the other in S j and Di = ∑

v∈Si
dv

denote the sum of degrees of nodes in Si . Then, M(S) =∑
Si∈S(

mi
m − (

Di
2m )2).

We will provide an approximation for OPT2(G) and
then use the result that OPT2(G) � OPT(G)

2 proved in [4].
Note that if OPT(G) � 10−6 then obviously OPT2(G) �
10−6, whereas if OPT(G) � 1 − 10−6 then OPT2(G) �
1
2 − 10−6

2 . Consider a partition S of V into exactly two sets,
say S and S = V \ S with 0 < μ(S) � 1

2 . By Lemma 2.2
of [4], M(S) = M(S) and thus

M(S) = 2 ×
(

m1

m
−

( |S|
n

)2)
= 2 ×

( 1
2 D(S)d|S|

1
2 dn

− μ(S)2
)

= 2 × (
D(S)μ(S) − μ(S)2)

Thus, letting D = D(S),μ = μ(S) and Φ = Φ(S), we have
Φ = 1 − D as per our notations used in page 349 and the
goal of modularity 2-clustering is to maximize the follow-
ing function f over all possible valid choices of D and μ:

f (μ,D) = 2 × (
μD − μ2) = 2 × (

μ(1 − Φ) − μ2)
3 We have made no significant attempts to optimize the constants in

Theorem 2.1.
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