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For a vertex v of a connected graph G(V , E) and a subset S of V , the distance between
a vertex v and S is defined by d(v, S) = min{d(v, x): x ∈ S}. For an ordered k-partition
π = {S1, S2 . . . Sk} of V , the partition representation of v with respect to π is the k-vector
r(v|π) = (d(v, S1),d(v, S2) . . .d(v, Sk)). The k-partition π is a resolving partition if the
k-vectors r(v|π), v ∈ V (G) are distinct. The minimum k for which there is a resolving
k-partition of V is the partition dimension of G . Salman et al. [1] in their paper which
appeared in Acta Mathematica Sinica, English Series proved that partition dimension of a
class of circulant graph G(n,±{1,2}), for all even n � 6 is four. In this paper we prove that
it is three.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The concepts of resolvability and location in graphs
were described independently by Slater [2] and Harary and
Melter [3], to define the same structure in a graph. Af-
ter these papers were published several authors developed
diverse theoretical works about this topic [3–8]. Slater de-
scribed the usefulness of these ideas into long range aids
to navigation [2]. Also, these concepts have some appli-
cations in chemistry for representing chemical compounds
[9] and to problems of pattern recognition and image pro-
cessing, some of which involve the use of hierarchical data
structures. Other applications of this concept to naviga-
tion of robots in networks and other areas appear in [4,
10]. Some variations on resolvability or location have been
appearing in the literature, like those about conditional
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resolvability [11], locating domination [12], resolving dom-
ination [13] and resolving partitions [4,14–16].

Given a graph G = (V , E) and an ordered set of ver-
tices S = {v1, v2 . . . vk} of G , the representation of a vertex
v ∈ V with respect to the set S is the vector r(v|S) =
(d(v, v1),d(v, v2) . . .d(v, vk)), where d(v, vi) denotes the
distance between the vertices v and vi , 1 � i � k. We say
that S is a resolving set if different vertices of G have differ-
ent representations, i.e., for every pair of vertices u, v ∈ V ,
r(u|S) �= r(v|S). The metric dimension of G is the minimum
cardinality of any resolving set of G , and it is denoted by
dim(G).

Given an ordered partition π = {S1, S2 . . . Sk} of the
vertices of G , the partition representation of a vertex
v ∈ V with respect to the given partition π is the vec-
tor r(v|π) = (d(v, S1),d(v, S2) . . .d(v, Sk)) where d(v, Si),
1 � i � k, represents the distance between the vertex v
and the set Si , i.e., d(v, Si) = min{d(v, u): u ∈ Si}. We
say that π is a resolving partition if different vertices of
G have different partition representations, i.e., for every
pair of vertices u, v ∈ V , r(u|π) �= r(v|π). The partition
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Fig. 1. Case when |T2| = |T1| + 2 in G(16,±{1,2}) with r = 3.

dimension of G is the minimum number of sets in any
resolving partition for G and it is denoted by pd(G). The
partition dimension of graphs is studied in [6,14,15,17].

It is natural to think that the partition dimension and
metric dimension are related; in [14] it was shown that for
any nontrivial connected graph G , pd(G) � dim(G) + 1. It
is also shown that pd(G) = 2 if and only if G = Pn [14].

2. Circulant graphs

The circulant graph is a natural generalization of the
double loop network and was first considered by Wong
and Coppersmith [18]. Circulant graphs have been used
for decades in the design of computer and telecommuni-
cation networks due to their optimal fault-tolerance and
routing capabilities [19]. It is also used in VLSI design and
distributed computation [20–22]. The term circulant comes
from the nature of its adjacency matrix. A matrix is circu-
lant if all its rows are periodic rotations of the first one.
Circulant matrices have been employed for designing bi-
nary codes [23]. Theoretical properties of circulant graphs
have been studied extensively and surveyed by Bermond et
al. [20]. Every circulant graph is a vertex transitive graph
and a Cayley graph [24]. Most of the earlier research con-
centrated on using the circulant graphs to build intercon-
nection networks for distributed and parallel systems [19,
20].

An undirected circulant graph, denoted by G(n,±{1,2
. . . j}), 1 � j � �n/2�, n � 3 is defined as a graph con-
sisting of the vertex set V = {0,1 . . .n − 1} and the edge
set E = {(i, j): | j − i| ≡ s (mod n), s ∈ {1,2 . . . j}}. It
is also clear that G(n,±1) is an undirected cycle and
G(n,±{1,2 . . . �n/2�}) is the complete graph Kn . We ob-
serve that G(n,±{1}) is a subgraph of G(n,±{1,2 . . . j}) for
every j, 1 � j � �n/2�.

The following theorem is due to Salman et al.

Theorem 2.1. (See [1].) For a family of circulant graphs G(n,

±{1,2}), pd(G) = 4 for all even n � 6 and n = 7.

Fig. 2. Path from q1 to S2.

It is known that the dim(G(n,±{1,2})) = 3, when n ≡
0,2 or 3 (mod 4) and 2 < dim(G(n,±{1,2})) � 4, when
n ≡ 1 (mod 4) [25].

In this paper we consider the class of circulant graphs
G = G(n,±{1,2}), n ≡ 0 (mod 4), n � 12, and prove that
the partition dimension is three, thereby improving Theo-
rem 2.1.

3. Main results

Salman et al. [1] have proved that Theorem 2.1 for all
even n � 6. We disprove this result for all even n � 12,
n ≡ 0 (mod 4). In order to obtain a resolving partition, we
require the following preliminaries.

Let G = G(n,±{1,2}), n ≡ 0 (mod 4), n � 12. Let T1 be
any set of consecutive vertices of G . Let S1 and S2 be the
sets of vertices at distance one from T1. Put T2 = V (G) −
(S1 ∪ S2 ∪ T1) and S3 = T1 ∪ T2. Now S1 and S2 are 2
subsets of V . So let S1 = {p1,q1} and S2 = {p2,q2}. Also
assume that p1, q1, p2, q2 lie on the outer cycle of G in
the clockwise direction.

Lemma 3.1. Let G = G(n,±{1,2}), n ≡ 0 (mod 4), n � 12.
Then π = {S1, S2, S3} is not a resolving partition when

(1) |T1| or |T2| is even.
(2) |T2| ∼ |T1| = 2.
(3) |T2| ∼ |T1| = 4m, 1 � m � 1 + (n − 12)/4.

Proof.

(1) Let |T1| be even. Without loss of generality, let T1 =
{0,1 . . . 2k − 1} for some positive integer k. In this case
S1 = {n −2,n −1} and S2 = {2k,2k +1}. The vertices 0



Download English Version:

https://daneshyari.com/en/article/427349

Download Persian Version:

https://daneshyari.com/article/427349

Daneshyari.com

https://daneshyari.com/en/article/427349
https://daneshyari.com/article/427349
https://daneshyari.com

