On the partition dimension of a class of circulant graphs

Cyriac Grigorious ${ }^{\text {a,b,* }}$, Sudeep Stephen ${ }^{\text {a }}$, Bharati Rajan ${ }^{\text {a,c }}$, Mirka Miller ${ }^{\text {b,d,e }}$, Albert William ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Loyola College, Chennai, India
${ }^{\mathrm{b}}$ School of Mathematical and Physical Sciences, The University of Newcastle, Australia
${ }^{\text {c }}$ School of Electrical Engineering and Computer Science, The University of Newcastle, Australia
${ }^{\mathrm{d}}$ Department of Mathematics, University of West Bohemia, Pilsen, Czech Republic
e Department of Informatics, King's College, London, UK

A R T I CLE IN F O

Article history:

Received 12 March 2013
Received in revised form 3 January 2014
Accepted 11 February 2014
Available online 19 February 2014
Communicated by Jinhui Xu

Keywords:

Partition dimension
Metric dimension
Circulant graphs
Interconnection networks

Abstract

For a vertex v of a connected graph $G(V, E)$ and a subset S of V, the distance between a vertex v and S is defined by $d(v, S)=\min \{d(v, x): x \in S\}$. For an ordered k-partition $\pi=\left\{S_{1}, S_{2} \ldots S_{k}\right\}$ of V, the partition representation of v with respect to π is the k-vector $r(v \mid \pi)=\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right) \ldots d\left(v, S_{k}\right)\right)$. The k-partition π is a resolving partition if the k-vectors $r(v \mid \pi), v \in V(G)$ are distinct. The minimum k for which there is a resolving k-partition of V is the partition dimension of G. Salman et al. [1] in their paper which appeared in Acta Mathematica Sinica, English Series proved that partition dimension of a class of circulant graph $G(n, \pm\{1,2\})$, for all even $n \geqslant 6$ is four. In this paper we prove that it is three.

(C) 2014 Elsevier B.V. All rights reserved.

1. Introduction

The concepts of resolvability and location in graphs were described independently by Slater [2] and Harary and Melter [3], to define the same structure in a graph. After these papers were published several authors developed diverse theoretical works about this topic [3-8]. Slater described the usefulness of these ideas into long range aids to navigation [2]. Also, these concepts have some applications in chemistry for representing chemical compounds [9] and to problems of pattern recognition and image processing, some of which involve the use of hierarchical data structures. Other applications of this concept to navigation of robots in networks and other areas appear in [4, 10]. Some variations on resolvability or location have been appearing in the literature, like those about conditional

[^0]resolvability [11], locating domination [12], resolving domination [13] and resolving partitions [4,14-16].

Given a graph $G=(V, E)$ and an ordered set of vertices $S=\left\{v_{1}, v_{2} \ldots v_{k}\right\}$ of G, the representation of a vertex $v \in V$ with respect to the set S is the vector $r(v \mid S)=$ $\left(d\left(v, v_{1}\right), d\left(v, v_{2}\right) \ldots d\left(v, v_{k}\right)\right)$, where $d\left(v, v_{i}\right)$ denotes the distance between the vertices v and $v_{i}, 1 \leqslant i \leqslant k$. We say that S is a resolving set if different vertices of G have different representations, i.e., for every pair of vertices $u, v \in V$, $r(u \mid S) \neq r(v \mid S)$. The metric dimension of G is the minimum cardinality of any resolving set of G, and it is denoted by $\operatorname{dim}(G)$.

Given an ordered partition $\pi=\left\{S_{1}, S_{2} \ldots S_{k}\right\}$ of the vertices of G, the partition representation of a vertex $v \in V$ with respect to the given partition π is the vector $r(v \mid \pi)=\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right) \ldots d\left(v, S_{k}\right)\right)$ where $d\left(v, S_{i}\right)$, $1 \leqslant i \leqslant k$, represents the distance between the vertex v and the set S_{i}, i.e., $d\left(v, S_{i}\right)=\min \left\{d(v, u): u \in S_{i}\right\}$. We say that π is a resolving partition if different vertices of G have different partition representations, i.e., for every pair of vertices $u, v \in V, r(u \mid \pi) \neq r(v \mid \pi)$. The partition

Fig. 1. Case when $\left|T_{2}\right|=\left|T_{1}\right|+2$ in $G(16, \pm\{1,2\})$ with $r=3$.
dimension of G is the minimum number of sets in any resolving partition for G and it is denoted by $\operatorname{pd}(G)$. The partition dimension of graphs is studied in [6,14,15,17].

It is natural to think that the partition dimension and metric dimension are related; in [14] it was shown that for any nontrivial connected graph $G, p d(G) \leqslant \operatorname{dim}(G)+1$. It is also shown that $p d(G)=2$ if and only if $G=P_{n}$ [14].

2. Circulant graphs

The circulant graph is a natural generalization of the double loop network and was first considered by Wong and Coppersmith [18]. Circulant graphs have been used for decades in the design of computer and telecommunication networks due to their optimal fault-tolerance and routing capabilities [19]. It is also used in VLSI design and distributed computation [20-22]. The term circulant comes from the nature of its adjacency matrix. A matrix is circulant if all its rows are periodic rotations of the first one. Circulant matrices have been employed for designing binary codes [23]. Theoretical properties of circulant graphs have been studied extensively and surveyed by Bermond et al. [20]. Every circulant graph is a vertex transitive graph and a Cayley graph [24]. Most of the earlier research concentrated on using the circulant graphs to build interconnection networks for distributed and parallel systems [19, 20].

An undirected circulant graph, denoted by $G(n, \pm\{1,2$ $\ldots j\}$), $1 \leqslant j \leqslant\lfloor n / 2\rfloor, n \geqslant 3$ is defined as a graph consisting of the vertex set $V=\{0,1 \ldots n-1\}$ and the edge set $E=\{(i, j):|j-i| \equiv s(\bmod n), s \in\{1,2 \ldots j\}\}$. It is also clear that $G(n, \pm 1)$ is an undirected cycle and $G(n, \pm\{1,2 \ldots\lfloor n / 2\rfloor\})$ is the complete graph K_{n}. We observe that $G(n, \pm\{1\})$ is a subgraph of $G(n, \pm\{1,2 \ldots j\})$ for every $j, 1 \leqslant j \leqslant\lfloor n / 2\rfloor$.

The following theorem is due to Salman et al.

Theorem 2.1. (See [1].) For a family of circulant graphs $G(n$, $\pm\{1,2\}), p d(G)=4$ for all even $n \geqslant 6$ and $n=7$.

Fig. 2. Path from q_{1} to S_{2}.
It is known that the $\operatorname{dim}(G(n, \pm\{1,2\}))=3$, when $n \equiv$ 0,2 or $3(\bmod 4)$ and $2<\operatorname{dim}(G(n, \pm\{1,2\})) \leqslant 4$, when $n \equiv 1(\bmod 4)[25]$.

In this paper we consider the class of circulant graphs $G=G(n, \pm\{1,2\}), n \equiv 0(\bmod 4), n \geqslant 12$, and prove that the partition dimension is three, thereby improving Theorem 2.1.

3. Main results

Salman et al. [1] have proved that Theorem 2.1 for all even $n \geqslant 6$. We disprove this result for all even $n \geqslant 12$, $n \equiv 0(\bmod 4)$. In order to obtain a resolving partition, we require the following preliminaries.

Let $G=G(n, \pm\{1,2\}), n \equiv 0(\bmod 4), n \geqslant 12$. Let T_{1} be any set of consecutive vertices of G. Let S_{1} and S_{2} be the sets of vertices at distance one from T_{1}. Put $T_{2}=V(G)-$ $\left(S_{1} \cup S_{2} \cup T_{1}\right)$ and $S_{3}=T_{1} \cup T_{2}$. Now S_{1} and S_{2} are 2 subsets of V. So let $S_{1}=\left\{p_{1}, q_{1}\right\}$ and $S_{2}=\left\{p_{2}, q_{2}\right\}$. Also assume that $p_{1}, q_{1}, p_{2}, q_{2}$ lie on the outer cycle of G in the clockwise direction.

Lemma 3.1. Let $G=G(n, \pm\{1,2\}), n \equiv 0(\bmod 4), n \geqslant 12$. Then $\pi=\left\{S_{1}, S_{2}, S_{3}\right\}$ is not a resolving partition when
(1) $\left|T_{1}\right|$ or $\left|T_{2}\right|$ is even.
(2) $\left|T_{2}\right| \sim\left|T_{1}\right|=2$.
(3) $\left|T_{2}\right| \sim\left|T_{1}\right|=4 m, 1 \leqslant m \leqslant 1+(n-12) / 4$.

Proof.

(1) Let $\left|T_{1}\right|$ be even. Without loss of generality, let $T_{1}=$ $\{0,1 \ldots 2 k-1\}$ for some positive integer k. In this case $S_{1}=\{n-2, n-1\}$ and $S_{2}=\{2 k, 2 k+1\}$. The vertices 0

https://daneshyari.com/en/article/427349

Download Persian Version:

https://daneshyari.com/article/427349

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: cyriac.grigorious@gmail.com (C. Grigorious).

