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We study the approximability of instances of the minimum entropy set cover problem,
parameterized by the average frequency of a random element in the covering sets. We
analyze an algorithm combining a greedy approach with another one biased towards
large sets. The algorithm is controlled by the percentage of elements to which we apply
the biased approach. The optimal parameter choice leads to improved approximation
guarantees when average element frequency is less than e.
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1. Introduction

The minimum entropy set cover problem (MESC) [1] arose
from a maximum likelihood approach to haplotype infer-
ence in computational biology (see also [2]). Halperin and
Karp showed that the problem is NP-complete and pro-
vided an additive upper bound (equal to three) on the
performance of the Greedy algorithm. This was later im-
proved by Cardinal et al. [3], who showed a tight additive
upper bound of log2(e). Cardinal et al. [4] also studied
several versions of this problem, notably minimum en-
tropy graph coloring [5] and minimum entropy orienta-
tion [5], as well as a generalization to arbitrary objective
functions [6]. Minimum entropy graph coloring has found
applications to problems related to functional compression
in information theory [7].

Minimum entropy set cover also lies behind a re-
cently proposed family of measures of worst-case fairness
in cost allocations in cooperative game theory [8]. This
was accomplished by first studying [9] a minimum en-
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tropy version of the well-known submodular set cover prob-
lem [10,11]. Submodularity corresponds in the setting of
cooperative game theory to concavity of the associated
game, a property that guarantees many useful features of
the game such as the non-emptiness of the core, member-
ship of the Shapley value in the core, equivalence between
group-strategyproofness and cross-monotonicity in mecha-
nism design [12] and so on.

In this paper we impose an additional restriction on
MESC: we parameterize its instances by f (formally de-
fined below), the average number of sets that cover a
random element. The previously studied minimum en-
tropy orientation problem [5] corresponds to a special case
of MESC with f = 2. With this additional restriction we
provide approximation guarantees that often improve on
those valid for the Greedy algorithm. To accomplish this
goal we study the performance of an approximation al-
gorithm BiasedGreedy(δ) parameterized by a constant δ ∈
[0,1].

Our main result can be summarized in the following
way: we give general upper bounds on the performance
of our proposed algorithm. These bounds improve on the
approximation guarantee of the greedy algorithm when av-
erage element frequency is less than the constant e.
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INPUT: An instance (U ,P) of MESC and
a real δ with 0 � δ � 1 where |L| = �δn�

Sort U by increasing element frequency in all subsets.
L := the set of first δn elements of U;
For all e ∈ L

choose ie ∈ [k] to maximize |Pi | where Pi � e;
let g(e) = ie;

Let PH := {P H
1 , P H

2 , . . . , P H
k } where P H

i = Pi \ L for all i ∈ [k]
and H = U \ L

While (there exists e ∈ H)
choose ie ∈ [k] to maximize |P H

i | where P H
i � e;

let g(e) = ie;
erase e from all P H

i ;
H := H \ {e};

OUTPUT: Cover g.

Algorithm 1. BiasedGreedy(δ).

The paper is structured as follows: in Section 2 we re-
view basic notions and define algorithm BiasedGreedy. The
main result is presented in Section 3. Its proof is given in
Section 4. In Section 5 we present an application of our
main result to the Minimum Entropy Graph Coloring prob-
lem.

2. Preliminaries

We will need the definition of Shannon entropy and the
associated Kullback–Leibler divergence of two distributions
P and Q : D(P ‖ Q ) = ∑

i pi log2
pi
qi

. We recall that D(P ‖
Q ) � 0 for all P and Q .

We are concerned with the following problem:

Definition 1. [Minimum Entropy Set Cover (MESC)]: Let
U = {u1, u2, . . . , un} be an n-element ground set, for some
n � 1, and let P = {P1, P2, . . . , Pk} be a family of subsets
of U which cover U . A cover is a function g : U → [k] such
that for every 1 � i � n, ui ∈ P g(ui) (“ui is covered by set
P g(ui)”). The entropy of cover g is defined by:

Ent(g) = −
k∑

i=1

|g−1(i)|
|U | log2

|g−1(i)|
|U | . (2.1)

[Objective]: Find a cover g of minimum entropy.

Consider an instance (U ,P) as above. Define f =∑k
i=1 |Pi |
|U | , the average frequency of a random element in U .
In the algorithm below we divide the elements of the

ground set into Light and Heavy elements (denoted L and
H in our algorithm), based on their frequency of occur-
rence in all given subsets. Parameter 0 � δ � 1 controls
this division: the least frequent δn elements are deemed
Light, while the rest are considered Heavy.

Let BG be the cover generated by the BiasedGreedy(δ)

algorithm, defined below, and denote by � = (�i)i∈[k] , �i =
|BG−1(i)|

n the associated probability distribution. Algorithm
BiasedGreedy(δ) also induces a probability distribution q =
(qi)i∈[k] , over the Light elements, with qi = |Light∩BG−1(i)|

|L| .
Informally, the algorithm will first cover Light elements

in a biased manner, simultaneously covering each such ele-
ment by a set of maximum cardinality containing it. Once

this phase is complete all Light elements are deleted from
all sets. The Heavy elements are handled in an incremental
manner via a Greedy approach. The algorithm is presented
in Algorithm 1.

One could apply this algorithm to the haplotype res-
olution problem of Halperin and Karp [1]. In this setting
a partial haplotype is simply a string over {0,1,∗}k , for
some k > 0. A complete haplotype h ∈ {0,1}k and a partial
haplotype h′ ∈ {0,1,∗}k are compatible if they are equal
on all non-∗ positions. One can model [1] haplotype res-
olution as searching for a minimum entropy cover: The
ground set U = {h1,h2, . . . ,hn} contains partial haplotypes
and S = {Sh | h ∈ {0,1}k} is the collection of subsets of U
indexed by a complete haplotype h, where Sh = {hi ∈ U | h
compatible with hi}. Biological constraints arising from the
specific database of complete haplotypes could make the
haplotype reconstruction problem sparse: some of the par-
tial haplotypes obtained by DNA sequencing could be com-
patible with very few complete haplotypes in the database.
Then the BG algorithm could be more suitable than Greedy,
by first covering all sparse (i.e. Light) partial haplotypes
in parallel. It is an interesting issue (for computational bi-
ologists, beyond the scope of this paper) whether such a
restriction occurs in practice.

3. Main result

Our main result gives a computable guarantee on the
performance of algorithm BiasedGreedy:

Theorem 1. Algorithm BiasedGreedy(δ) produces a cover BG :
U �−→ [k] satisfying:

Ent(BG)� Ent(OPT) − (1 − δ) log2
(1 − δ)

e
+ δ log2 f + δD(q ‖ �) + o(1). (3.1)

Since distribution � depends on δ it is rather difficult
to optimize over constant δ in inequality (3.1). For the
same reason it is not clear whether the bounds we give
are sharp (it is an interesting open problem to give such
bounds). However for f < e choice δ = 1 results in a bet-
ter bound than the one given by the Greedy algorithm
(BiasedGreedy(0)):

Corollary 1. The Biased algorithm, defined as the BiasedGreedy
algorithm with δ = 1, produces a cover BI whose entropy satis-
fies Ent(BI) � Ent(OPT) + log2 f .

Proof. When δ = 1 all elements are light, hence distribu-
tions q and � coincide and D(q‖�) = 0. �
4. Proof of the main result

Proof. Let OPT be the optimal solution. Denote xi =
|OPT−1(i)| and yi = |OPT−1(i) ∩ H | for all 1 � i � k.
By choice of δ,

∑k
i=1 yi = n − �δn� � (1 − δ)n while∑k

i=1 xi = n.
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