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We consider the problem of designing approximation schemes for the values of mean-
payoff games. It was recently shown that (1) mean-payoff with rational weights scaled
on [−1,1] admit additive fully-polynomial approximation schemes, and (2) mean-payoff
games with positive weights admit relative fully-polynomial approximation schemes. We
show that the problem of designing additive/relative approximation schemes for general
mean-payoff games (i.e. with no constraint on their edge-weights) is P-time equivalent to
determining their exact solution.
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1. Introduction

Two-player mean-payoff games are played on weighted
graphs1 with two types of vertices: in player-0 vertices,
player 0 chooses the successor vertex from the set of out-
going edges; in player-1 vertices, player 1 chooses the suc-
cessor vertex from the set of outgoing edges. The game
results in an infinite path through the graph. The long-
run average of the edge-weights along this path, called the
value of the play, is won by player 0 and lost by player 1.

The decision problem for mean-payoff games asks, given
a vertex z and a threshold μ ∈Q, if player 0 has a strategy
to win a value at least μ when the game starts in z. The
value problem consists in computing the maximal (rational)
value that player 0 can achieve from each vertex v of the
game. The associated (optimal) strategy synthesis problem is
to construct a strategy for player 0 that secures the maxi-
mal value.

Mean-payoff games have been first studied by Ehren-
feucht and Mycielski in [1] and Moulin in [23,24] on the
special class of weighted bipartite graphs.2 In particu-
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1 In which every edge has a positive/negative (rational) weight.
2 Boros et al. [7] gave recently polynomial reductions from general

mean-payoff games to mean-payoff games on bipartite graphs. In [12]

lar, in [1] it was shown that memoryless (or positional)
strategies suffice to achieve the optimal value. This re-
sult entails that the decision problem for these games lies
in NP ∩ coNP [2,30], and it was later shown to belong
to3 UP ∩ coUP [20]. Despite many efforts [13,14,18,22,25,
30–32], no polynomial-time algorithm for the mean-payoff
game problems is known so far.

Beside such a theoretically engaging complexity sta-
tus, mean-payoff games have plenty of applications, es-
pecially in the synthesis, analysis and verification of re-
active (non-terminating) systems. Many natural models of
such systems include quantitative information, and the cor-
responding question requires the solution of quantitative
games, like mean-payoff games [5,11,16,33]. Concrete ex-
amples of applications include finite-window online string
matching [30], streaming editing between two regular lan-
guages [4], embedded controller synthesis [5,33], various
kinds of scheduling and selection with limited storage [10,
30]. Mean-payoff games can even be used for solving the
max-plus algebra Ax = Bx problem, which in turn has
further applications [14]. Last but not least, mean-payoff

Chatterjee et al. defined further reductions from the bipartite case to the
complete bipartite case.

3 The complexity class UP is the class of problems recognizable by un-
ambiguous polynomial time nondeterministic Turing machines [26]. Obvi-
ously P ⊆ UP ∩ coUP ⊆ NP ∩ coNP.
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games have tight connections with important problems in
game theory and logic. For instance, parity games [17] and
the model-checking problem for the modal μ-calculus [21]
are poly-time reducible to mean-payoff games [15], and it
is a long-standing open question to know whether these
problems are in P.

In [30], Zwick and Paterson defined the first pseu-
dopolynomial algorithm for mean-payoff games,4 improv-
ing on purely exponential solutions proposed in [25,31].
The algorithm in [30] solves the decision problem (resp.
value problem) for mean-payoff games in O(|E| · |V |2 ·
W ) steps (resp. in O(|E| · |V |3 · W ) steps), where |V |
is the number of vertices in the arena of the game, |E|
is the number of edges, and W is the maximum (abso-
lute) weight labeling an edge. Coding mean-payoff games
as energy games [8,9], the authors of [22] provided bet-
ter pseudopolynomial mean-payoff algorithms, running in
time O(|E| · |V | · W ) for the corresponding decision prob-
lem, and O(|E| · |V |2 · W · (log |V | + log W )) for the value
problem. In [3,18], the authors defined a randomized al-
gorithm which is both subexponential and pseudopoly-
nomial. In [19], Halman proved that simple stochastic
games [13] can be formulated as an LP-type problem, an
abstract generalization of linear programming problems.5

Such a formulation leads to further strongly subexponen-
tial (randomized) algorithms for simple stochastic games
and mean-payoff games.

Recently, the authors of [6,27] showed that the pseu-
dopolynomial procedures in [22,25,30] can be used to
design (fully) polynomial value approximation schemes
for certain classes of mean-payoff games: namely, mean-
payoff games with positive (integer) weights or rational
weights with absolute value less or equal to 1. In this pa-
per, we consider the problem of extending such positive
approximation results for general mean-payoff games, i.e.
mean-payoff games with weights arbitrary shifted/scaled
on the line of rational numbers.

2. Preliminaries and definitions

2.1. Game graphs

A game graph is a tuple Γ = (V , E, w, 〈V 0, V 1〉) where
GΓ = (V , E, w) is a weighted graph and 〈V 0, V 1〉 is a par-
tition of V into the set V 0 of player-0 vertices and the set
V 1 of player-1 vertices. An infinite game on Γ is played
for infinitely many rounds by two players moving a peb-
ble along the edges of the weighted graph GΓ . In the first
round, the pebble is on some vertex v ∈ V . In each round,
if the pebble is on a vertex v ∈ V i (i = 0,1), then player i
chooses an edge (v, v ′) ∈ E and the next round starts with
the pebble on v ′ . A play in the game graph Γ is an in-
finite sequence p = v0 v1 . . . vn . . . such that (vi, vi+1) ∈ E
for all i � 0. A strategy for player i (i = 0,1) is a function
σ : V ∗ · V i → V , such that for all finite paths v0 v1 . . . vn

4 I.e., polynomial in the number of vertices |V |, the number of
edges |E|, and the maximal absolute weight W , rather than in the bi-
nary representation of W .

5 Further connections between mean-payoff games and linear program-
ming are established in [29].

with vn ∈ V i , we have (vn, σ (v0 v1 . . . vn)) ∈ E . A strategy-
profile is a pair of strategies 〈σ0, σ1〉, where σ0 (resp. σ1)
is a strategy for player 0 (resp. player 1). We denote by
Σi (i = 0,1) the set of strategies for player i. A strat-
egy σ for player i is memoryless if σ(p) = σ(p′) for all
sequences p = v0 v1 . . . vn and p′ = v ′

0 v ′
1 . . . v ′

m such that
vn = v ′

m . We denote by ΣM
i the set of memoryless strate-

gies of player i. A play v0 v1 . . . vn . . . is consistent with
a strategy σ for player i if v j+1 = σ(v0 v1 . . . v j) for all
positions j � 0 such that v j ∈ V i . Given an initial ver-
tex v ∈ V , the outcome of the strategy profile 〈σ0, σ1〉 in
v is the (unique) play outcomeΓ (v, σ0, σ1) that starts in
v and is consistent with both σ0 and σ1. Given a memo-
ryless strategy πi for player i in the game Γ , we denote
by GΓ (πi) = (V , Eπi , w) the weighted graph obtained by
removing from GΓ all edges (v, v ′) such that v ∈ V i and
v ′ 
= πi(v).

2.2. Mean-payoff games

A mean-payoff game (MPG) [1] is an infinite game
played on a game graph Γ where player 0 wins a pay-
off value defined as the long-run average weights of the
play, while player 1 loses that value. Formally, the payoff
value of a play v0 v1 . . . vn . . . in Γ is

MP(v0 v1 . . . vn . . .) = lim inf
n→∞

1

n
·

n−1∑
i=0

w(vi, vi+1).

The value secured by a strategy σ0 ∈ Σ0 in a vertex v is

valσ0(v) = inf
σ1∈Σ1

MP
(
outcomeΓ (v,σ0,σ1)

)

and the (optimal) value of a vertex v in a mean-payoff
game Γ is

valΓ (v) = sup
σ0∈Σ0

inf
σ1∈Σ1

MP
(
outcomeΓ (v,σ0,σ1)

)
.

We say that σ0 is optimal if valσ0 (v) = valΓ (v) for all
v ∈ V . Secured value and optimality are defined analo-
gously for strategies of player 1. Ehrenfeucht and Myciel-
ski [1] show that mean-payoff games are memoryless de-
termined, i.e., memoryless strategies are sufficient for op-
timality and the optimal (maximum) value that player 0
can secure is equal to the optimal (minimum) value that
player 1 can achieve.

Theorem 2.1. (See [1].) For all MPG Γ = (V , E, w, 〈V 0, V 1〉)
and for all vertices v ∈ V , we have

valΓ (v) = sup
σ0∈Σ0

inf
σ1∈Σ1

MP
(
outcomeΓ (v,σ0,σ1)

)

= inf
σ1∈Σ1

sup
σ0∈Σ0

MP
(
outcomeΓ (v,σ0,σ1)

)
,

and there exist two memoryless strategies π0 ∈ ΣM
0 and π1 ∈

ΣM
1 such that

valΓ (v) = valπ0(v) = valπ1(v).
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