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We consider the problem of designing approximation schemes for the values of mean-
payoff games. It was recently shown that (1) mean-payoff with rational weights scaled
on [—1,1] admit additive fully-polynomial approximation schemes, and (2) mean-payoff
games with positive weights admit relative fully-polynomial approximation schemes. We
show that the problem of designing additive/relative approximation schemes for general

mean-payoff games (i.e. with no constraint on their edge-weights) is P-time equivalent to

Keywords:
Mean-payoff games
Approximation algorithms

determining their exact solution.
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1. Introduction

Two-player mean-payoff games are played on weighted
graphs! with two types of vertices: in player-0 vertices,
player 0 chooses the successor vertex from the set of out-
going edges; in player-1 vertices, player 1 chooses the suc-
cessor vertex from the set of outgoing edges. The game
results in an infinite path through the graph. The long-
run average of the edge-weights along this path, called the
value of the play, is won by player 0 and lost by player 1.

The decision problem for mean-payoff games asks, given
a vertex z and a threshold w € Q, if player 0 has a strategy
to win a value at least & when the game starts in z. The
value problem consists in computing the maximal (rational)
value that player O can achieve from each vertex v of the
game. The associated (optimal) strategy synthesis problem is
to construct a strategy for player O that secures the maxi-
mal value.

Mean-payoff games have been first studied by Ehren-
feucht and Mycielski in [1] and Moulin in [23,24] on the
special class of weighted bipartite graphs.> In particu-
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T In which every edge has a positive/negative (rational) weight.
2 Boros et al. [7] gave recently polynomial reductions from general
mean-payoff games to mean-payoff games on bipartite graphs. In [12]
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lar, in [1] it was shown that memoryless (or positional)
strategies suffice to achieve the optimal value. This re-
sult entails that the decision problem for these games lies
in NP N coNP [2,30], and it was later shown to belong
to®> UP N coUP [20]. Despite many efforts [13,14,18,22,25,
30-32], no polynomial-time algorithm for the mean-payoff
game problems is known so far.

Beside such a theoretically engaging complexity sta-
tus, mean-payoff games have plenty of applications, es-
pecially in the synthesis, analysis and verification of re-
active (non-terminating) systems. Many natural models of
such systems include quantitative information, and the cor-
responding question requires the solution of quantitative
games, like mean-payoff games [5,11,16,33]. Concrete ex-
amples of applications include finite-window online string
matching [30], streaming editing between two regular lan-
guages [4], embedded controller synthesis [5,33], various
kinds of scheduling and selection with limited storage |10,
30]. Mean-payoff games can even be used for solving the
max-plus algebra Ax = Bx problem, which in turn has
further applications [14]. Last but not least, mean-payoff

Chatterjee et al. defined further reductions from the bipartite case to the
complete bipartite case.

3 The complexity class UP is the class of problems recognizable by un-
ambiguous polynomial time nondeterministic Turing machines [26]. Obvi-
ously P € UP N coUP C NP N coNP.
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games have tight connections with important problems in
game theory and logic. For instance, parity games [17] and
the model-checking problem for the modal p-calculus [21]
are poly-time reducible to mean-payoff games [15], and it
is a long-standing open question to know whether these
problems are in P.

In [30], Zwick and Paterson defined the first pseu-
dopolynomial algorithm for mean-payoff games,* improv-
ing on purely exponential solutions proposed in [25,31].
The algorithm in [30] solves the decision problem (resp.
value problem) for mean-payoff games in O(|E| - |V|? -
W) steps (resp. in O(|E| - |V|® - W) steps), where |V|
is the number of vertices in the arena of the game, |E|
is the number of edges, and W is the maximum (abso-
lute) weight labeling an edge. Coding mean-payoff games
as energy games [8,9], the authors of [22] provided bet-
ter pseudopolynomial mean-payoff algorithms, running in
time O(|E|-|V|- W) for the corresponding decision prob-
lem, and O(|E| - |V|>- W - (log|V| + log W)) for the value
problem. In [3,18], the authors defined a randomized al-
gorithm which is both subexponential and pseudopoly-
nomial. In [19], Halman proved that simple stochastic
games [13] can be formulated as an LP-type problem, an
abstract generalization of linear programming problems.’
Such a formulation leads to further strongly subexponen-
tial (randomized) algorithms for simple stochastic games
and mean-payoff games.

Recently, the authors of [6,27] showed that the pseu-
dopolynomial procedures in [22,25,30] can be used to
design (fully) polynomial value approximation schemes
for certain classes of mean-payoff games: namely, mean-
payoff games with positive (integer) weights or rational
weights with absolute value less or equal to 1. In this pa-
per, we consider the problem of extending such positive
approximation results for general mean-payoff games, i.e.
mean-payoff games with weights arbitrary shifted/scaled
on the line of rational numbers.

2. Preliminaries and definitions
2.1. Game graphs

A game graph is a tuple I = (V, E, w, (Vg, V1)) where
GI=(W,E,w)isa weighted graph and (Vq, V1) is a par-
tition of V into the set V of player-0 vertices and the set
V1 of player-1 vertices. An infinite game on I' is played
for infinitely many rounds by two players moving a peb-
ble along the edges of the weighted graph G'. In the first
round, the pebble is on some vertex v € V. In each round,
if the pebble is on a vertex v € V; (i =0, 1), then player i
chooses an edge (v, v') € E and the next round starts with
the pebble on v'. A play in the game graph I' is an in-
finite sequence p = voVv1...vy... such that (vj, viy1) € E
for all i > 0. A strategy for player i (i=0,1) is a function
o :V*.V;— V, such that for all finite paths vovy...v,

4 Le., polynomial in the number of vertices |V|, the number of
edges |E|, and the maximal absolute weight W, rather than in the bi-
nary representation of W.

5 Further connections between mean-payoff games and linear program-
ming are established in [29].

with v, € V;, we have (vp,0(voVvy...Vvy)) € E. A strategy-
profile is a pair of strategies (og, o1), where og (resp. o1)
is a strategy for player O (resp. player 1). We denote by
Y; (i=0,1) the set of strategies for player i. A strat-
egy o for player i is memoryless if o(p) = o (p’) for all
sequences p = VgVi...Vy and p’ = vyvy... vy, such that
vy = v},. We denote by EiM the set of memoryless strate-
gies of player i. A play vovy...v,... is consistent with
a strategy o for player i if vj;1 =0 (vovy...vj) for all
positions j > 0 such that vj € V;. Given an initial ver-
tex v € V, the outcome of the strategy profile (0p,01) in
v is the (unique) play outcome! (v, o9, 07) that starts in
v and is consistent with both oy and oq. Given a memo-
ryless strategy m; for player i in the game I, we denote
by G () = (V, Ex;, w) the weighted graph obtained by
removing from G! all edges (v, v’) such that v € V; and
v #£ (V).

2.2. Mean-payoff games

A mean-payoff game (MPG) [1] is an infinite game
played on a game graph I' where player 0 wins a pay-
off value defined as the long-run average weights of the
play, while player 1 loses that value. Formally, the payoff
value of a play vovi...vy...in " is

n—1

MP(vgVvy...Vp...) = l}gg};fﬁ . Z w(Vi, Vit1).
i=0

The value secured by a strategy opg € Xy in a vertex v is

val’®(v) = inf MP(outcomer(v,ao,m))

o1€X
and the (optimal) value of a vertex v in a mean-payoff
game I is

val’ (v) = sup inf MP(outcome’ (v, a0, 01)).
0‘062001621

We say that og is optimal if val®o(v) = vall (v) for all
v e V. Secured value and optimality are defined analo-
gously for strategies of player 1. Ehrenfeucht and Myciel-
ski [1] show that mean-payoff games are memoryless de-
termined, i.e., memoryless strategies are sufficient for op-
timality and the optimal (maximum) value that player 0
can secure is equal to the optimal (minimum) value that
player 1 can achieve.

Theorem 2.1. (See [1].) For all MPG I" = (V,E, w, (Vo, V1))
and for all vertices v € V, we have

val’ (v) = sup inf MP(outcome’ (v, 0d0,01))
0-062001621

= inf sup MP(outcome’ (v, 00,071)),
o1€X 00€Xy

and there exist two memoryless strategies 1y € E(’)V’ and 1 €
XM such that

vall'(v) = val™ (v) = val™ (v).
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