
Information Processing Letters 114 (2014) 392–396

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On a compact encoding of the swap automaton

Kimmo Fredriksson a, Emanuele Giaquinta b,1,∗
a School of Computing, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
b Department of Computer Science, University of Helsinki, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 July 2013
Received in revised form 13 January 2014
Accepted 13 January 2014
Available online 16 January 2014
Communicated by Ł. Kowalik

Keywords:
Combinatorial problems
String algorithms
Automata theory
Word-level parallelism

Given a string P of length m over an alphabet Σ of size σ , a swapped version of P
is a string derived from P by a series of local swaps, i.e., swaps of adjacent symbols,
such that each symbol can participate in at most one swap. We present a theoretical
analysis of the nondeterministic finite automaton for the language

⋃
P ′∈ΠP

Σ∗ P ′ (swap
automaton, for short), where ΠP is the set of swapped versions of P . Our study is based
on the bit-parallel simulation of the same automaton due to Fredriksson, and reveals an
interesting combinatorial property that links the automaton to the one for the language
Σ∗ P . By exploiting this property and the method presented by Cantone et al. (2012), we
obtain a bit-parallel encoding of the swap automaton which takes O (σ 2�k/w�) space and
allows one to simulate the automaton on a string of length n in time O (n�k/w�), where
�m/σ � � k � m is the size of a specific factorization of P defined by Cantone et al. (2012)
and w is the word size in bits.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Pattern Matching with Swaps problem (Swap Match-
ing problem, for short) is a well-studied variant of the clas-
sic Pattern Matching problem. It consists in finding all oc-
currences, up to character swaps, of a pattern P of length
m in a text T of length n, with P and T sequences of char-
acters over a common finite alphabet Σ of size σ . More
precisely, the pattern is said to match the text at a given
location j if adjacent pattern characters can be swapped,
if necessary, so as to make it identical to the substring of
the text ending (or, equivalently, starting) at location j. All
swaps are constrained to be disjoint, i.e., each character
can be involved at most in one swap.

The Swap Matching problem was introduced in 1995 as
one of the open problems in nonstandard string match-
ing [1]. The first result that improved over the naive
O (nm)-time bound is due to Amir et al. [2], who presented

an O (nm
1
3 log m)-time algorithm for binary alphabets and

* Corresponding author.
E-mail address: emanuele.giaquinta@cs.helsinki.fi (E. Giaquinta).

1 Supported by the Academy of Finland, Grant 118653 (ALGODAN).

described how to reduce the case of a general alphabet
to that of a binary one with an O (logσ)-time overhead.
The best theoretical result to date is due to Amir et al. [3].
Their algorithm runs in time O (n log m) for binary alpha-
bets and can also solve the case of general alphabets in
time O (n log m logσ) by using again the alphabet reduc-
tion technique of Amir et al. [2]. Both solutions are based
on reducing the problem to convolutions. Note that this
problem can also be solved using more general algorithms
for Approximate String Matching [4], albeit with worse
bounds.

There also exist different practical solutions, based
on word-level parallelism. To our knowledge, the first
one is due to Fredriksson [5], who presented a gener-
alization of the nondeterministic finite automaton (NFA)
for the language Σ∗ P (prefix automaton) for the Swap
Matching problem and a fast method to simulate it us-
ing bit-parallelism [6]. The resulting algorithm runs in
O (n�m/w�)-time and uses O (σ �m/w�) space, where w is
the machine word size in bits. In the same paper Fredriks-
son also presented a variant of the BNDM algorithm [7],
based on the generalization of the NFA for the language
of the suffixes of P (suffix automaton), which achieves
sublinear time on average and runs in O (nm�m/w�)-time

0020-0190/$ – see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2014.01.004

http://dx.doi.org/10.1016/j.ipl.2014.01.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:emanuele.giaquinta@cs.helsinki.fi
http://dx.doi.org/10.1016/j.ipl.2014.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.01.004&domain=pdf

K. Fredriksson, E. Giaquinta / Information Processing Letters 114 (2014) 392–396 393

in the worst-case. In 2008 Iliopoulos and Rahman pre-
sented a variant of Shift-Or for this problem, based on a
Graph-Theoretic model [8]. Their algorithm runs in time
O (n�m/w� log m) and uses O (m�m/w�) space (the log m
term can be removed at the price of O (σ 2�m/w�) space).
The improvement over the algorithm by Fredriksson is that
the resulting bit-parallel simulation is simpler, in that it
requires fewer bitwise operations. Later, Cantone and Faro
presented an algorithm based on dynamic programming
that runs in time O (n�m/w�) and requires O (σ �m/w�)
space [9]. Subsequently Campanelli et al. presented a vari-
ant of the BNDM algorithm based on the same approach
which runs in O (nm�m/w�)-time in the worst-case [10].

In [11] Cantone et al. presented a technique to encode
the prefix automaton in O (σ 2�k/w�) space and simulate it
on a string of length n in O (n�k/w�) time, where �m/σ ��
k � m. In this paper we extend this result to the NFA de-
scribed in [5]. First, we present a theoretical analysis of
this NFA, from which the correctness of the bit-parallel
simulation presented in the same paper follows. We then
show that, by exploiting the properties of this NFA that
we reveal in the following, we can solve the Swap Match-
ing problem in time O (n�k/w�) and space O (σ 2�k/w�),
where �m/σ �� k � m, using the method presented in [11].
Our result improves over the existing time bound in the
word-RAM model by a factor of σ in the best case. More-
over, it can also be applied, with small changes, to the
case of the generalized suffix automaton so as to obtain
an improved BNDM-like algorithm for the Swap Matching
problem.

2. Notions and basic definitions

Given a finite alphabet Σ of size σ , we denote by Σm ,
with m � 0, the set of strings of length m over Σ and put
Σ∗ = ⋃

m∈N Σm . We represent a string P ∈ Σm as an array
P [0 . . .m −1] of characters of Σ and write |P | = m (in par-
ticular, for m = 0 we obtain the empty string ε). Thus, P [i]
is the (i + 1)-st character of P , for 0 � i < m, and P [i . . . j]
is the substring of P contained between its (i + 1)-st and
(j + 1)-st characters, inclusive, for 0 � i � j < m. For any
two strings P and P ′ , we write P P ′ to denote the concate-
nation of P and P ′ .

Given a string P ∈ Σm , we indicate with A(P) =
(Q ,Σ, δ,q0, F) the nondeterministic finite automaton
(NFA) for the language Σ∗ P of all words in Σ∗ end-
ing with an occurrence of P (prefix automaton for short),
where:

• Q = {q0,q1, . . . ,qm} (q0 is the initial state);
• the transition function δ : Q ×Σ −→ P(Q) is defined

by:

δ(qi, c) =Def

⎧⎪⎨
⎪⎩

{q0,q1} if i = 0 and c = P [0],
{q0} if i = 0 and c �= P [0],
{qi+1} if 1 � i < m and c = P [i],
∅ otherwise;

• F = {qm} (F is the set of final states).

The valid configurations δ∗(q0, S) which are reachable
by the automaton A(P) on input S ∈ Σ∗ are defined re-
cursively as follows:

δ∗(q0, S) =Def

⎧⎪⎨
⎪⎩

{q0} if S = ε,⋃
q′∈δ∗(q0,S ′) δ(q

′, c)
if S = S ′c, for some c ∈ Σ and

S ′ ∈ Σ∗.

Definition 1. A swap permutation for a string P of length m
is a permutation π : {0, . . . ,m − 1} → {0, . . . ,m − 1} such
that:

(a) if π(i) = j then π(j) = i (characters are swapped);
(b) for all i, π(i) ∈ {i − 1, i, i + 1} (only adjacent characters

are swapped);
(c) if π(i) �= i then P [π(i)] �= P [i] (identical characters are

not swapped).

For a given string P and a swap permutation π for P ,
we write π(P) to denote the swapped version of P , namely
π(P) = P [π(0)]P [π(1)] . . . P [π(m − 1)].

Definition 2 (Pattern Matching with Swaps problem). Given
a text T of length n and a pattern P of length m, find
all locations j ∈ {m − 1, . . . ,n − 1} for which there exists
a swap permutation π of P such that π(P) matches T at
location j, i.e. P [π(i)] = T [j −m + i +1], for i = 0 . . .m −1.

Finally, we recall the notation of some bitwise infix op-
erators on computer words, namely the bitwise and “&”,
the bitwise or “|”, the left shift “
” operator (which
shifts to the left its first argument by a number of bits
equal to its second argument), and the unary bitwise not
operator “∼”.

3. 1-factorization encoding of the prefix automaton

A 1-factorization u of size |u| = k of a string P is a se-
quence 〈u1, u2, . . . , uk〉 of nonempty substrings of P such
that:

(a) P = u1u2 . . . uk;
(b) each factor u j in u contains at most one occurrence

of any of the characters in the alphabet Σ , for j =
1, . . . ,k.

The size k of a 1-factorization satisfies the condition
�m/σ �� k � m. The following result was presented in [11]:

Theorem 1. (Cf. [11].) Given a string P of length m and a
1-factorization of P of size k, we can encode the automa-
ton A(P) in O (σ 2�k/w�) space and simulate it in time
O (n�k/w�) on a string of length n.

We briefly recall how the encoding of Theorem 1 works.
A 1-factorization 〈u1, u2, . . . , uk〉 of P induces a partition
{Q 1, . . . , Q k} of the set Q \ {q0} of states of the automaton
A(P), where

Q i =Def {qri+1, . . . ,qri+1}, for i = 1, . . . ,k,

Download	English	Version:

https://daneshyari.com/en/article/427356

Download	Persian	Version:

https://daneshyari.com/article/427356

Daneshyari.com

https://daneshyari.com/en/article/427356
https://daneshyari.com/article/427356
https://daneshyari.com/

