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The Quadratic Assignment Problem (QAP) is a well-known NP-hard combinatorial 
optimization problem that has received a lot of attention from the research community 
since it has many practical applications, such as allocation of facilities, design of electronic 
devices, etc. In this paper, we propose a hybrid approximate approach for the QAP based 
upon the framework of the Biased Random Key Genetic Algorithm. This hybrid approach 
includes an improvement method to be applied over the best individuals of the population 
in order to exploit the promising regions found in the search space. In the computational 
experiments, we evaluate the performance of our approach on widely known instances 
from the literature. In these experiments, we compare our approach against the best 
proposals from the related literature and we conclude that our approach is able to report 
high-quality solutions by means of short computational times.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Quadratic Assignment Problem (QAP) is a combina-
torial optimization problem introduced by Koopmans and 
Beckman [14]. Input data for the QAP are a set of facilities
denoted as F = {1, 2, . . . , n} and a set of locations de-
noted as L = {1, 2, . . . , n}. Each pair of facilities, (i, j) ∈F , 
requires a certain flow, denoted as f i j ≥ 0. The distance be-
tween the locations k, l ∈L is denoted as dkl ≥ 0. It should 
be mentioned that the flows and distances are symmet-
ric (i.e., f i j = f ji, ∀i, j ∈ F and dkl = dlk, ∀k, l ∈ L) and the 
flow/distance between a given facility/location and itself is 
zero (i.e., f ii = 0, ∀i ∈F and dkk = 0, ∀k ∈L).

The objective of the QAP is to minimize the cost de-
rived from the distance and flows among facilities. This can 
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be formally expressed as minimizing the following expres-
sion:

n∑

i=1

n∑

j=1

f i jdφ(i)φ( j), (1)

where φ is a solution belonging to the set composed of 
all the feasible permutations, denoted as Sn , such that 
φ : F → L. The cost associated to assign facility i to lo-
cation φ(i) and facility j to facility φ( j) is, according to 
Equation (1), f i jdφ(i)φ( j) . In addition, let us denote as f (φ)

the objective function value of solution φ ∈ Sn . A com-
prehensive description of the QAP is provided by Burkard 
et al. [2].

The QAP is known to belong to the NP-hard class 
(Sahni and Gonzalez [17]). In fact, there are no exact meth-
ods in the literature which can tackle the QAP in medium 
scenarios (n > 25) by means of reasonable computational 
times. Nowadays, its hardness and heterogeneous appli-
cations turn the QAP a challenging problem within the 
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optimization field. Additionally, many well-known prob-
lems such as the Travelling Salesman Problem or Graph 
Partitioning can be formulated as the QAP. In this con-
text, the QAP has served as proving ground for algorith-
mic proposals over the last decades. Exact methods have 
been proposed by Fedjki and Duffuaa [4] and Erdoǧan and 
Tansel [10]. Drezner et al. [7] review the applicability of 
widespread metaheuristics from the literature to address 
the QAP. The interested reader is referred to the detailed 
survey provided by Loiola et al. [15].

There are many practical applications of the QAP in the 
literature. For instance, Duman and Or [8] discuss how to 
carry out the sequencing of placement and configuration 
of feeder in printed circuit boards. Cheng et al. [5] model 
the passenger walking distance in airports according to the 
passenger transfer volume between aircrafts and distance 
between gates. Finally, Wu et al. [20] describe an applica-
tion within the field of coding theory.

The remainder of this paper is organized as follows. 
Section 2 describes the Hybrid Biased Random Key Ge-
netic Algorithm proposed to address the QAP. Afterwards, 
Section 3 analyzes the performance of our proposal in re-
alistic scenarios. Finally, Section 4 draws forth the main 
conclusions extracted from the work and suggests several 
directions for further research.

2. Hybrid Biased Random Key Genetic Algorithm

Genetic Algorithms (GAs) are bio-inspired algorithms 
based upon the concepts of biological evolution and sur-
vival of the fittest individuals (Holland [13]). One of the 
major drawbacks of GAs is the difficulty to maintain fea-
sibility through successive generations. With the goal of 
avoiding this fact, Bean [1] introduced the concept of ran-
dom key. A random key is a real-valued number defined in 
[0, 1), whereas a random key vector is an element of the 
[0, 1)ρ space, where ρ depends on the dimension of the 
optimization problem at hand. For instance, ρ = n when 
addressing the Quadratic Assignment Problem (QAP).

A Random Key Genetic Algorithm (RKGA) is a variant 
of GA in which the chromosomes are random key vec-
tors. The reproduction is performed by copying a subset of 
elite individuals (i.e., those individuals with the lowest ob-
jective function value) from the current population to the 
next one. In this case, the parameterized uniform crossover 
suggested by Spears and De Jong [18] is used as crossover 
strategy. This strategy involves tossing a biased coin for 
each gene in order to determine which parent contributes 
to the corresponding gene of the relevant offspring solu-
tion. Finally, a set of random individuals is included into 
the current population during the mutation phase.

A variation of RKGA was presented by Ericsson et al.
[11], in which one parent is selected from the set of 
elite individuals and the other one from the rest of the 
population when applying the crossover operator. In this 
case, a biased coin favouring the elite parent is tossed 
during the crossover. Although this specialized version of 
the RKGA was proposed as a heuristic to solve a particu-
lar problem (i.e., the Weight Setting Problem), it contained 
the germ of what in the subsequent paper by Gonçalves 
and Resende [12] would be identified as a general-purpose 

Algorithm 1: Hybrid Biased Random Key Genetic Al-
gorithm.

Require: G , number of generations
Require: t , size of the population
Require: e, number of elite individuals in the population
Require: m, number of mutant individuals in the population
Require: α, crossover rate
Require: n, number of facilities in the QAP
Ensure: Best solution found for the QAP

1: Create P(1) with random key vectors composed of n random 
keys by means of Solution Generator Procedure

2: Evaluate the fitness of each individual in P(1)

3: for (g = 2 . . .G) do
4: P(g) = Pe(g − 1)

5: Apply improvement method over each individual included into 
P(g)

6: Include m mutant individuals in P(g) with Solution Generator 
Procedure

7: while (|P(g)| ≤ t) do
8: rk1 ← Select an individual at random from Pe(g − 1)

9: rk2 ← Select an individual at random from P(g − 1) \
Pe(g − 1)

10: rk ← Crossover(rk1, rk2, α)
11: P(g) = P(g) ∪ {rk};
12: end while
13: Evaluate the fitness of each individual in P(g)

14: end for
15: return Best solution in P(G)

metaheuristic: the Biased Random Key Genetic Algorithm 
(BRKGA).

A BRKGA evolves a fixed-size population, denoted as 
P(g) = {P1, P2, . . . , Pt}, composed of t random key vec-
tors for each generation g = 1, 2, . . . , G . The objective func-
tion values of the individuals included into the popula-
tion determine a partition: P(g) = Pe(g) ∪ Pc(g), g =
1, 2, . . . , G (where t = e + c). In this regard, Pe(g) ⊂ P(g)

is termed elite population and composed of the elite indi-
viduals, whereas Pc(g) ⊂ P(g) is termed non-elite popula-
tion and contains the remaining individuals. Each random 
key vector, P ∈ P(g), is mapped at the solution space 
of the optimization problem by means of a deterministic 
procedure termed decoder, denoted as d : P → φ (see Sec-
tion 2.2). This way, a random key vector, P , is decoded 
to a feasible solution of the optimization problem, φ ∈ Sn . 
Once the solution is decoded into the problem space, its 
fitness value, f (φ), is computed. The evolutionary dyna-
mics of a BRKGA are as follows. At each generation g , all 
the elite individuals are copied from the current popula-
tion P(g) (without any change) to the population of the 
next generation, P(g + 1). Afterwards, a set Pm(g + 1) of 
mutant individuals is inserted into P(g + 1) with the goal 
of diversifying the search.

In this work, we propose a Hybrid Biased Random Key 
Genetic Algorithm (HBRKGA) approach in order to solve 
the QAP. Its pseudocode is depicted in Algorithm 1. It 
takes as parameters the number of generations, G , the size 
of the population, t , the number of elite individuals, e, 
the number of mutant individuals, m (where e + m ≤ t
and 2 × e ≤ t), the crossover rate, α, and the number of 
facilities involved in the QAP to be solved, n. The first 
step of the HBRKGA is to obtain the initial population, 
P(1) (line 1) generated by a Solution Generation Proce-
dure consisting of generating n random keys at random. 
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